Load balancing

Prof. Richard Vuduc Georgia Institute of Technology CSE/CS 8803 PNA: Parallel Numerical Algorithms [L.26] Thursday, April 17, 2008

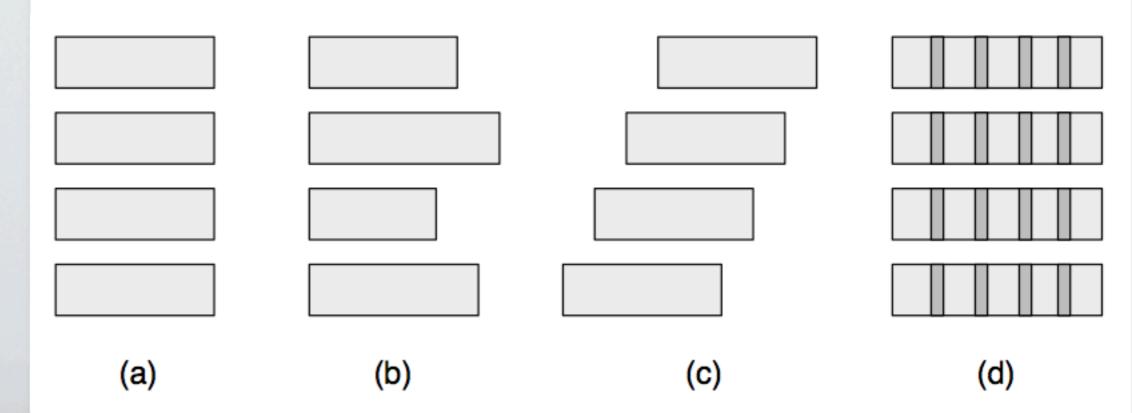
Today's sources

- CS 194/267 at UCB (Yelick/Demmel)
- "Intro to parallel computing" by Grama, Gupta, Karypis, & Kumar

Sources of inefficiency in parallel programs

- Poor single processor performance; *e.g.*, memory system
- Overheads; *e.g.*, thread creation, synchronization, communication
- Load imbalance
 - Unbalanced work / processor
 - Heterogeneous processors and/or other resources

Parallel efficiency: 4 scenarios



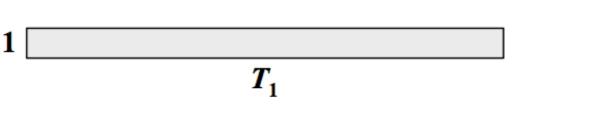
Consider load balance, concurrency, and overhead

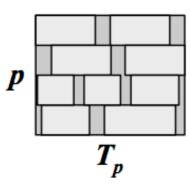
H

Recognizing inefficiency

Cost = (no. procs) * (execution time)

$$C_1 \equiv T_1$$
 $C_p \equiv p \cdot T_p = \frac{W_p}{V\left(\frac{M}{p}\right)}$







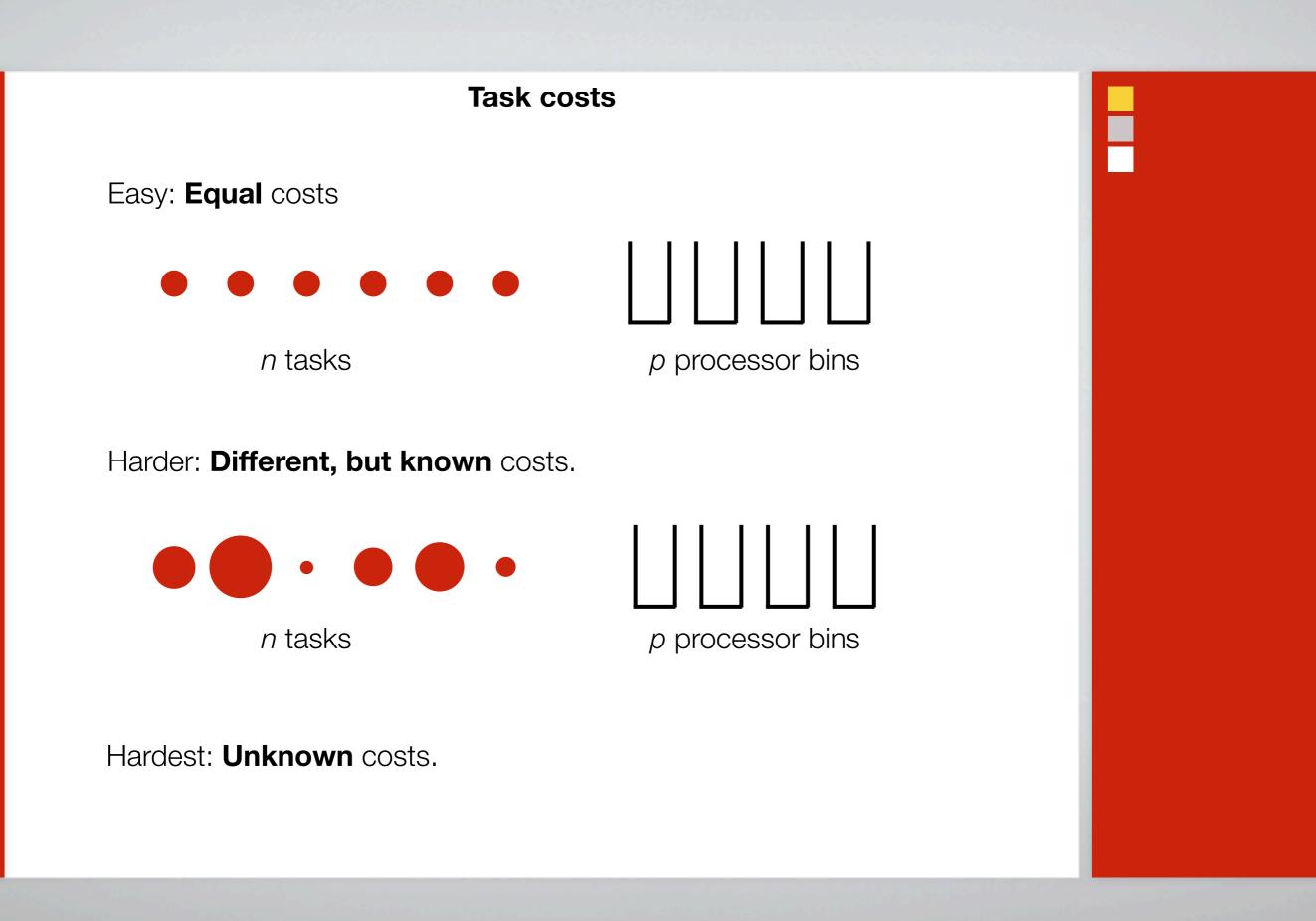
Tools: VAMPIR, ParaProf (TAU), Paradyn, HPCToolkit (serial) ...

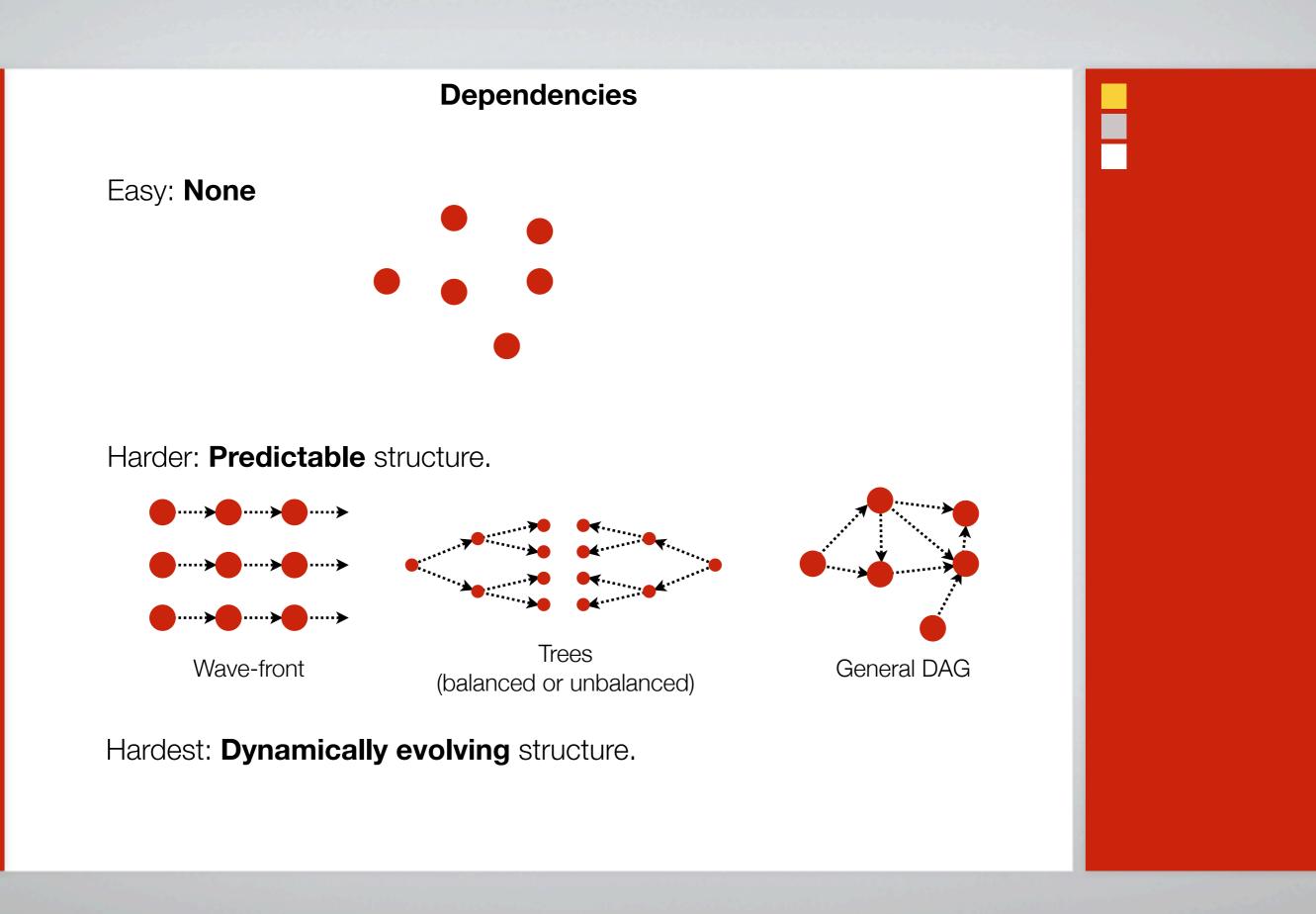
Sources of "irregular" parallelism

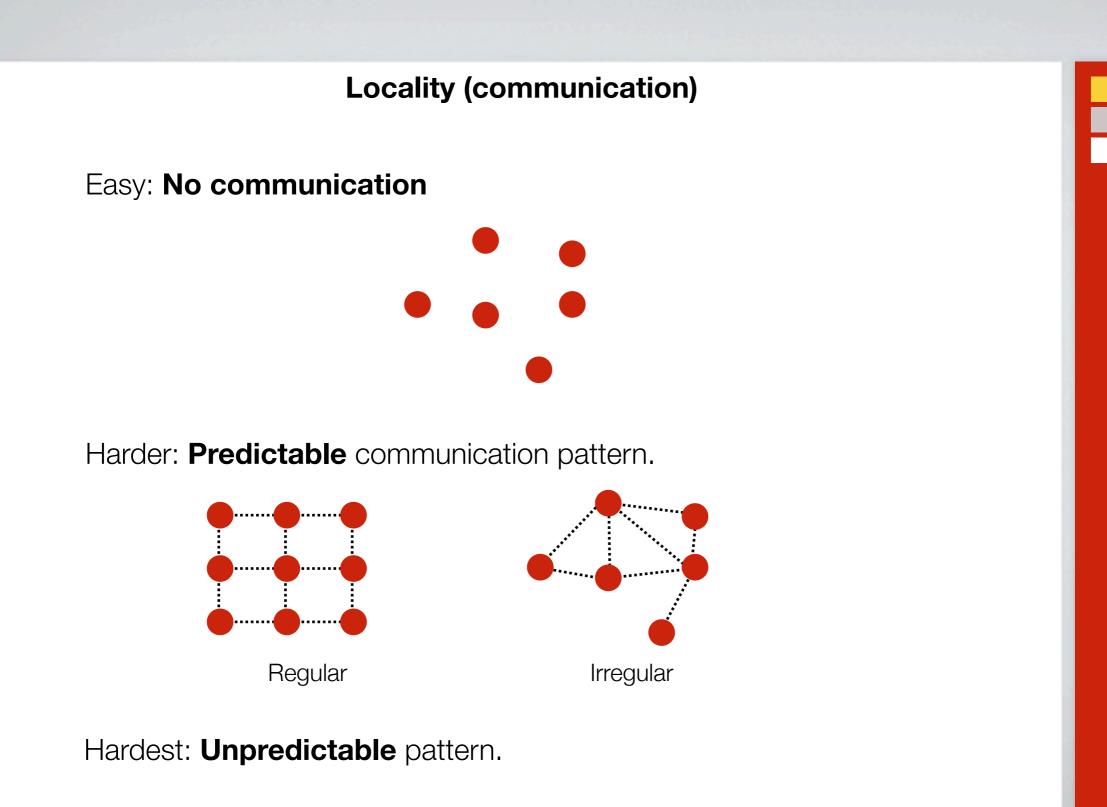
- Hierarchical parallelism, *e.g.*, adaptive mesh refinement
- Divide-and-conquer parallelism, *e.g.*, sorting
- Branch-and-bound search
 - Example: Game tree search
 - Challenge: Work depends on computed values
- Discrete-event simulation

Major issues in load balancing

- **Task costs**: How much?
- **Dependencies**: How to sequence tasks?
- **Locality**: How does data or information flow?
- **Heterogeneity**: Do processors operate at same or different speeds?
- Common question: **When** is information known?
- Answers \Rightarrow Spectrum of load balancing techniques







When information known \Rightarrow spectrum of scheduling solutions

- **Static**: Everything known in advance \Rightarrow off-line algorithms
- Semi-static
 - Information known at well-defined points, *e.g.*, start-up, start of time-step
 - $\Rightarrow \text{ Off-line algorithm between major steps}$

Dynamic

- Information known in mid-execution
- $\Rightarrow \text{On-line algorithms}$

Dynamic load balancing

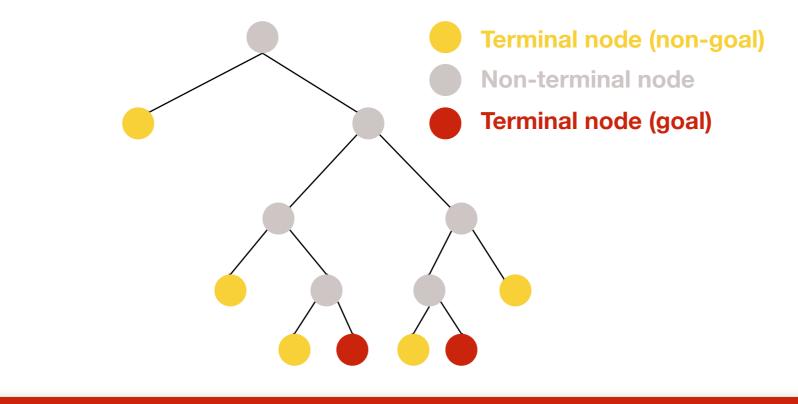
- Motivating example: Search algorithms
- Techniques: Centralized vs. distributed

Motivating example: Search problems

- Optimal layout of VLSI chips
- Robot motion planning
- Chess and other games
- Constructing a phylogeny tree from a set of genes

Example: Tree search

- Search tree unfolds dynamically
- May be a graph if there are common sub-problems

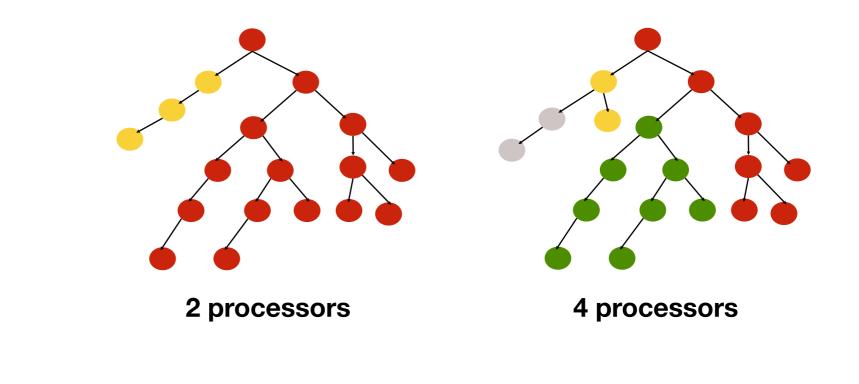


Search algorithms

- Depth-first search
 - Simple back-tracking
 - Branch-and-bound
 - Track best solution so far ("bound")
 - Prune subtrees guaranteed to be worse than bound
 - Iterative deepening: DFS w/ bounded depth; repeatedly increase bound
- Breadth-first search

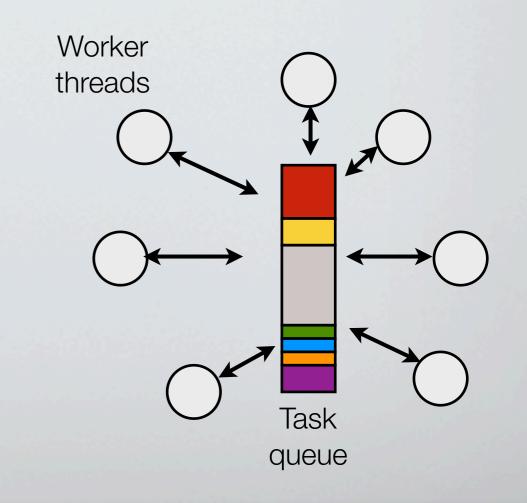
Parallel search example: Simple back-tracking DFS

A static approach: Spawn each new task on an idle processor



Centralized scheduling

- Maintain shared task queue
 - Dynamic, on-line approach
 - Good for small no. of workers
 - Independent tasks, known
- For loops: Self-scheduling
 - Task = subset of iterations
 - Loop body has unpredictable time
 - Tang & Yew (ICPP '86)



Self-scheduling trade-off

- Unit of work to grab: balance vs. contention
- Some variations:

F

- Grab fixed size chunk
- Guided self-scheduling
- Tapering
- Weighted factoring

Variation 1: Fixed chunk size

- Kruskal and Weiss (1985) give a model for computing optimal chunk size
 - Independent subtasks
 - Assumed distributions of running time for each subtask (*e.g.*, IFR)
 - Overhead for extracting task, also random
- Limitations
 - Must know distributions
 - However, 'n / p' does OK (~ .8 optimal for large n/p)
- Ref: "Allocating independent subtasks on parallel processors"

Variation 2: Guided self-scheduling

- ldea
 - Large chunks at first to avoid overhead
 - Small chunks near the end to even-out finish times
 - Chunk size $K_i = ceil(R_i / p)$, $R_i = #$ of remaining tasks
- Polychronopoulos & Kuck (1987): "Guided self-scheduling: A practical scheduling scheme for parallel supercomputers"

Variation 3: Tapering

ldea

- Chunk size $K_i = f(R_i; \mu, \sigma)$
- (μ, σ) estimated using history
- High-variance \Rightarrow small chunk size
- Low-variance \Rightarrow larger chunks OK
- S. Lucco (1994), "Adaptive parallel programs." PhD Thesis.
 - Better than guided self-scheduling, at least by a little

 $\kappa = \min.$ chunk size h =selection overhead $\implies K_i = f\left(\frac{\sigma}{\mu}, \kappa, \frac{R_i}{p}, h\right)$

Variation 4: Weighted factoring

- What if hardware is heterogeneous?
- Idea: Divide task cost by computational power of requesting node
- Ref: Hummel, Schmit, Uma, Wein (1996). "Load-sharing in heterogeneous systems using weighted factoring." In SPAA

When self-scheduling is useful

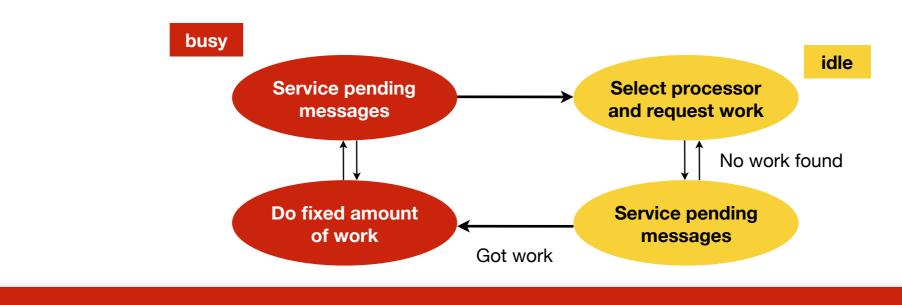
- Task cost unknown
- Locality not important
- Shared memory or "small" numbers of processors
- Tasks without dependencies; can use with, but most analysis ignores this

Distributed task queues

- Extending approach for distributed memory
 - Shared task queue \rightarrow distributed task queue, or "bag"
 - Idle processors "pull" work, busy processors "push" work
- When to use?
 - Distributed memory, or shared memory with high sync overhead, small tasks
 - Locality not important
 - Tasks known in advance; dependencies computed on-the-fly
 - Cost of tasks not known in advance

Distributed dynamic load balancing

- For a tree search
 - Processors search disjoint parts of the tree
 - Busy and idle processors exchange work
 - Communicate asynchronously



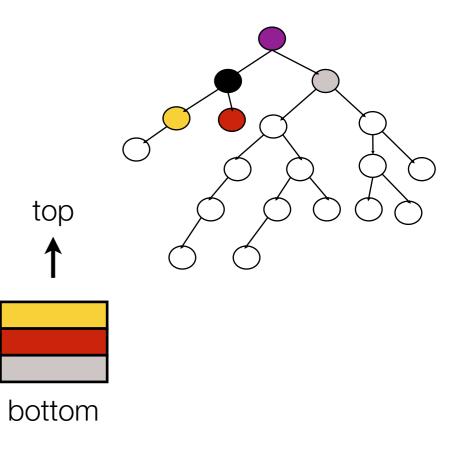
Η

Selecting a donor processor: Basic techniques

- Asynchronous round-robin
 - Each processor k maintains target_k
 - When out of work, request from target_k and update target_k
- Global round robin: Proc 0 maintains global "target" for all procs
- Random polling/stealing

How to split work?

- How many tasks to split off?
 - Total tasks unknown, unlike selfscheduling case
- Which tasks?
 - Send oldest tasks (stack bottom)
 - Execute most recent (top)
 - Other strategies?



A general analysis of parallel DFS

- Let *w* = work at some processor
 - Split into two parts:

$$0 < \rho < 1:$$
 $\rho \cdot w$
 $(1 - \rho) \cdot w$

Then:

$$\exists \phi: \qquad 0 < \phi \leq \frac{1}{2} \\ \phi \cdot w < \rho \cdot w \\ \phi \cdot w < (1 - \rho) \cdot w$$

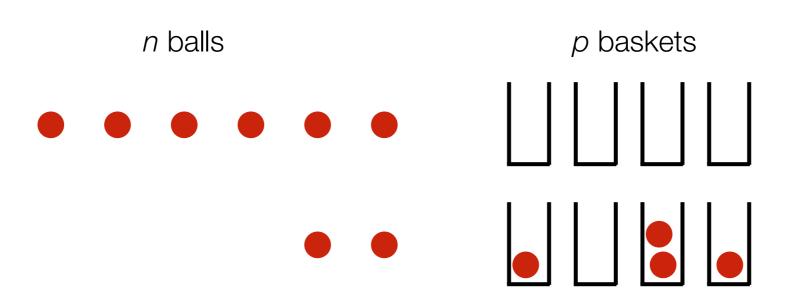
Each partition has at least ϕ w work, or at most $(1-\phi)$ w.

A general analysis of parallel DFS

If processor P_i initially has work w_i and receives request from P_j :

- After splitting, $P_i \& P_j$ have at most $(1-\phi)w_i$ work.
- For some load balancing strategy, let V(p) = no. of work requests after which each processor has received at least 1 work request [$\Rightarrow V(p) \ge p$]
- Initially, *P*₀ has *W* units of work, and all others have no work
- After V(p) requests, max work $< (1-\phi)^*W$
- After $2^*V(p)$ requests, max work $< (1-\phi)^{2^*W}$
- ⇒ Total number of requests = $O(V(p) \log W)$

Computing V(p) for random polling



- Consider randomly throwing balls into bins
- V(p) = average number of trials needed to get at least 1 ball in each basket
- What is *V(p)*?

A general analysis of parallel DFS: Isoefficiency

Asynchronous round-robin:

$$V(p) = O(p^2) \implies W = O(p^2 \log p)$$

Global round-robin:

$$W = O(p^2 \log p)$$

Random:

$$W = O(p \log^2 p)$$

Η

Theory: Randomized algorithm is optimal with high probability

- Karp & Zhang (1988) prove for tree with equal-cost tasks
 - "A randomized parallel branch-and-bound procedure" (JACM)
 - Parents must complete before children
 - Tree unfolds at run-time
 - Task number/priorities not known a priori
 - Children "pushed" to random processors

Η

Theory: Randomized algorithm is optimal with high probability

- Blumofe & Leiserson (1994) prove for fixed task tree with **variable cost** tasks
 - Idea: **Work-stealing** idle task pulls ("steals"), instead of pushing
 - Also bound total memory required
 - Scheduling multithreaded computations by work stealing"
- Chakrabarti, Ranade, Yelick (1994) show for **dynamic tree** w/ variable tasks
 - Pushes instead of pulling \Rightarrow possibly worse locality
 - "Randomized load-balancing for tree-structured computation"

Diffusion-based load balancing

- Randomized schemes treat machine as fully connected
- **Diffusion-based** balancing accounts for topology
 - Better locality
 - Slower"
 - Cost of tasks assumed known at creation time
 - No dependencies between tasks

Diffusion-based load balancing

- Model machine as graph
- At each step, compute weight of tasks remaining on each processor
- Each processor compares weight with neighbors and "averages"
- See: Ghosh, Muthukrishnan, Schultz (1996): "First- and second-order diffusive methods for rapid, coarse, distributed load balancing" (SPAA)

Summary

- Unpredictable loads \rightarrow online algorithms
- Fixed set of tasks with unknown costs \rightarrow self-scheduling
- Dynamically unfolding set of tasks \rightarrow work stealing
- Other scenarios: What if...
 - Iocality is of paramount importance?
 - task graph is known in advance?

Administrivia

Final stretch...

Project checkpoints due already

Locality considerations

What if locality is important?

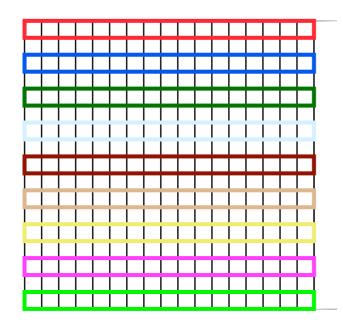
Example scenarios

- Bag of tasks that need to communicate
- Arbitrary task graph, where tasks share data
- Need to run tasks on same or "nearby" processor

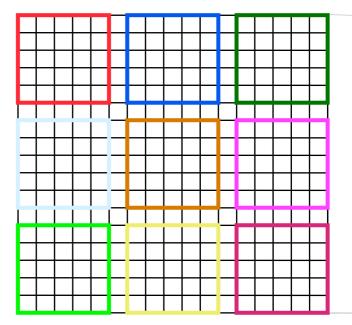
Stencil computation on a regular mesh

- Load balancing \rightarrow equally sized partitions
- Locality → Minimize perimeter to minimize processor edge-crossings

$$n \times (p-1)$$



$$2 \times n \times (\sqrt{p} - 1)$$



"In conclusion..."

Ideas apply broadly

- Physical sciences, *e.g.*,
 - Plasmas

- Molecular dynamics
- Electron-beam lithography device simulation
- Fluid dynamics
- Generalized" n-body problems: Talk to your classmate, Ryan Riegel

Backup slides