
Load balancing

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.26] Thursday, April 17, 2008

1



Today’s sources

CS 194/267 at UCB (Yelick/Demmel)

“Intro to parallel computing” by Grama, Gupta, Karypis, & Kumar

2



Sources of inefficiency in parallel 
programs

Poor single processor performance; e.g., memory system

Overheads; e.g., thread creation, synchronization, communication

Load imbalance

Unbalanced work / processor

Heterogeneous processors and/or other resources

3



Parallel efficiency: 4 scenarios

Consider load balance, concurrency, and overhead

4



Recognizing inefficiency

Cost = (no. procs) * (execution time)

C1 ≡ T1 Cp ≡ p · Tp =
Wp

V
(

M
p

)

5



Tools: VAMPIR, ParaProf (TAU), Paradyn, HPCToolkit (serial) …

6



Sources of “irregular” parallelism

Hierarchical parallelism, e.g., adaptive mesh refinement

Divide-and-conquer parallelism, e.g., sorting

Branch-and-bound search

Example: Game tree search

Challenge: Work depends on computed values

Discrete-event simulation

7



Major issues in load balancing

Task costs: How much?

Dependencies: How to sequence tasks?

Locality: How does data or information flow?

Heterogeneity: Do processors operate at same or different speeds? 

Common question: When is information known?

Answers ⇒ Spectrum of load balancing techniques

8



Task costs

Easy: Equal costs

Harder: Different, but known costs.

Hardest: Unknown costs.

n tasks p processor bins

n tasks p processor bins

9



Dependencies

Easy: None

Harder: Predictable structure.

Hardest: Dynamically evolving structure.

Wave-front
Trees

(balanced or unbalanced)
General DAG

10



Locality (communication)

Easy: No communication

Harder: Predictable communication pattern.

Hardest: Unpredictable pattern.

Regular Irregular

11



When information known ⇒ 

spectrum of scheduling solutions

Static: Everything known in advance ⇒ off-line algorithms

Semi-static

Information known at well-defined points, e.g., start-up, start of time-step

⇒ Off-line algorithm between major steps

Dynamic

Information known in mid-execution

⇒ On-line algorithms

12



Dynamic load balancing
Motivating example: Search algorithms

Techniques: Centralized vs. distributed

13



Motivating example:
Search problems

Optimal layout of VLSI chips

Robot motion planning

Chess and other games

Constructing a phylogeny tree from a set of genes

14



Example: Tree search

Search tree unfolds dynamically

May be a graph if there are common sub-problems

Terminal node (non-goal)

Non-terminal node

Terminal node (goal)

15



Search algorithms

Depth-first search

Simple back-tracking

Branch-and-bound

Track best solution so far (“bound”)

Prune subtrees guaranteed to be worse than bound

Iterative deepening: DFS w/ bounded depth; repeatedly increase bound

Breadth-first search

16



Parallel search example:
Simple back-tracking DFS

A static approach: Spawn each new task on an idle processor

2 processors 4 processors

17



Task

queue

Worker

threads

Centralized scheduling

Maintain shared task queue

Dynamic, on-line approach

Good for small no. of workers

Independent tasks, known

For loops: Self-scheduling

Task = subset of iterations

Loop body has unpredictable time

Tang & Yew (ICPP ’86)

18



Self-scheduling trade-off

Unit of work to grab: balance vs. contention

Some variations:

Grab fixed size chunk

Guided self-scheduling

Tapering

Weighted factoring

19



Variation 1: Fixed chunk size

Kruskal and Weiss (1985) give a model for computing optimal chunk size

Independent subtasks

Assumed distributions of running time for each subtask (e.g., IFR)

Overhead for extracting task, also random

Limitations

Must know distributions

However, ‘n / p’ does OK (~ .8 optimal for large n/p)

Ref: “Allocating independent subtasks on parallel processors”

20



Variation 2: Guided self-scheduling

Idea

Large chunks at first to avoid overhead

Small chunks near the end to even-out finish times

Chunk size Ki = ceil(Ri / p), Ri = # of remaining tasks

Polychronopoulos & Kuck (1987): “Guided self-scheduling: A practical 
scheduling scheme for parallel supercomputers”

21



Variation 3: Tapering

Idea

Chunk size Ki = f(Ri; μ, σ)

(μ, σ) estimated using history

High-variance ⇒ small chunk size

Low-variance ⇒ larger chunks OK

S. Lucco (1994), “Adaptive parallel programs.” PhD Thesis.

Better than guided self-scheduling, at least by a little

κ = min. chunk size
h = selection overhead

=⇒ Ki = f

(
σ

µ
,κ,

Ri

p
, h

)

22



Variation 4: Weighted factoring

What if hardware is heterogeneous?

Idea: Divide task cost by computational power of requesting node

Ref: Hummel, Schmit, Uma, Wein (1996). “Load-sharing in heterogeneous 
systems using weighted factoring.” In SPAA

23



When self-scheduling is useful

Task cost unknown

Locality not important

Shared memory or “small” numbers of processors

Tasks without dependencies; can use with, but most analysis ignores this

24



Distributed task queues

Extending approach for distributed memory

Shared task queue → distributed task queue, or “bag”

Idle processors “pull” work, busy processors “push” work

When to use?

Distributed memory, or shared memory with high sync overhead, small tasks

Locality not important

Tasks known in advance; dependencies computed on-the-fly

Cost of tasks not known in advance

25



Distributed dynamic load balancing

For a tree search

Processors search disjoint parts of the tree

Busy and idle processors exchange work

Communicate asynchronously

Service pending
messages

Do fixed amount
of work

Select processor
and request work

Service pending 
messages

No work found

busy
idle

Got work

26



Selecting a donor processor:
Basic techniques

Asynchronous round-robin

Each processor k maintains targetk

When out of work, request from targetk and update targetk

Global round robin: Proc 0 maintains global “target” for all procs

Random polling/stealing

27



How to split work?

How many tasks to split off?

Total tasks unknown, unlike self-
scheduling case

Which tasks?

Send oldest tasks (stack bottom)

Execute most recent (top)

Other strategies?

top

bottom

28



A general analysis of parallel DFS

Let w = work at some processor

Split into two parts:

Then:

0 < ρ < 1 : ρ · w

(1− ρ) · w

∃ φ : 0 < φ ≤ 1
2

φ · w < ρ · w

φ · w < (1− ρ) · w

Each partition has 
at least ϕw work,
or at most (1-ϕ)w.

29



A general analysis of parallel DFS

If processor Pi initially has work wi and receives request from Pj:

After splitting, Pi & Pj have at most (1-ϕ)wi work.

For some load balancing strategy, let V(p) = no. of work requests after which 
each processor has received at least 1 work request [⇒ V(p) ≥ p]

Initially, P0 has W units of work, and all others have no work

After V(p) requests, max work < (1-ϕ)*W

After 2*V(p) requests, max work < (1-ϕ)2*W

⇒ Total number of requests = O (V (p) log W )

30



Computing V(p) for random polling

Consider randomly throwing balls into bins

V(p) = average number of trials needed to get at least 1 ball in each basket

What is V(p)?

n balls p baskets

31



A general analysis of parallel DFS:
Isoefficiency

Asynchronous round-robin:

Global round-robin:

Random:

V (p) = O(p2) =⇒ W = O(p2 log p)

W = O(p2 log p)

W = O(p log2 p)

32



Theory: Randomized algorithm is 
optimal with high probability

Karp & Zhang (1988) prove for tree with equal-cost tasks

“A randomized parallel branch-and-bound procedure” (JACM)

Parents must complete before children

Tree unfolds at run-time

Task number/priorities not known a priori

Children “pushed” to random processors

33



Theory: Randomized algorithm is 
optimal with high probability

Blumofe & Leiserson (1994) prove for fixed task tree with variable cost tasks

Idea: Work-stealing – idle task pulls (“steals”), instead of pushing

Also bound total memory required

“Scheduling multithreaded computations by work stealing”

Chakrabarti, Ranade, Yelick (1994) show for dynamic tree w/ variable tasks

Pushes instead of pulling ⇒ possibly worse locality

“Randomized load-balancing for tree-structured computation”

34



Diffusion-based load balancing

Randomized schemes treat machine as fully connected

Diffusion-based balancing accounts for topology

Better locality

“Slower”

Cost of tasks assumed known at creation time

No dependencies between tasks

35



Diffusion-based load balancing

Model machine as graph

At each step, compute weight of tasks remaining on each processor

Each processor compares weight with neighbors and “averages”

See: Ghosh, Muthukrishnan, Schultz (1996): “First- and second-order 
diffusive methods for rapid, coarse, distributed load balancing” (SPAA)

36



Summary

Unpredictable loads → online algorithms

Fixed set of tasks with unknown costs → self-scheduling

Dynamically unfolding set of tasks → work stealing

Other scenarios: What if…

locality is of paramount importance?

task graph is known in advance?

37



Administrivia

38



Final stretch…

Project checkpoints due already

39



Locality considerations

40



What if locality is important?

Example scenarios

Bag of tasks that need to communicate

Arbitrary task graph, where tasks share data

Need to run tasks on same or “nearby” processor

41



Stencil computation on a regular 
mesh

Load balancing → equally sized partitions

Locality → Minimize perimeter to minimize processor edge-crossings

n× (p− 1) 2× n× (
√

p− 1)

42



“In conclusion…”

43



Ideas apply broadly

Physical sciences, e.g.,

Plasmas

Molecular dynamics

Electron-beam lithography device simulation

Fluid dynamics

“Generalized” n-body problems: Talk to your classmate, Ryan Riegel

44



Backup slides

45


