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Today’s sources

CS 267 at UCB (Demmel & Yelick)
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Review:
Tree codes
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Approximate long-distance 
interactions
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Idea: Organize particles into a tree
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Source: M. Warren & J. Salmon, In Supercomputing 1993.
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Barnes-Hut algorithm (1986)

Algorithm:

Build tree

For each node, compute center-of-mass and total mass

For each particle, traverse tree to compute force on it

If D/R < θ, approximate with center-of-mass

Else, recurse on node and sum child results
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Fast multipole method of
Greengard & Rokhlin (1987)

Differences from Barnes-Hut

Computes potential, not force

Uses more than center-of- and total-mass ⇒ more accurate & expensive

Accesses fixed set of boxes at every level, independent of “D / R”

Increasing accuracy

BH: Fixed info / box, more boxes

FMM: Fixed no. of boxes; more info / box
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FMM computes compact
expression for potential

r
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Potential in 3-D

3-D:
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2-D multipole expansion

Error(p) ∼
(
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|z|

)p+1
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Can approx.
by truncation
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FMM algorithm

Build tree

Bottom-up traversal to compute Outer(N)

Top-down traversal to compute Inner(N)

For each leaf N, add contributions of nearest particles 
directly into Inner(N)
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Building Outer(N)
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FMM algorithm
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Building Inner(N)
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FMM algorithm

Build tree

Bottom-up traversal to compute Outer(N)

Top-down traversal to compute Inner(N)

For each leaf N, add contributions of nearest 
particles directly into Inner(N)
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Dual-trees

Build trees for “queries” and “references”

Queries = points on which to compute forces

References = points contributing to force

In physics n-body as we’ve discussed it, these are the same sets of points

For pairs of tree nodes:

If “bounds” suggest a result for the pair, use it

Else, recurse on all pairs
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Tree code parallelization
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Basic tree-code structure

Build tree

Traverse from leaves to root to compute outer expansions

(In B-H, center-of-mass and total-mass)

Traverse from root to leaves to compute any inner expansions

Traverse to compute forces

Question: Load-balancing for force computation?
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Scheme 1: Partition space

Divide space into regions with roughly equal particles in each

Assign each region to a processor

Each processor computes locally essential tree (LET)
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Scheme 2: Partition tree

“Cost-zones” (shared memory); “hashed oct-tree” (distributed)

Partitioning the tree

For each node, estimate work W

Linearize tree (many choices)

Partition nodes to roughly balance W / p
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Linearizing the tree:
Hashed quad-/oct-trees

Scheme:

Assign unique key to each node in tree

Compute hash(key) : key → global address in hash table

Distribute hash table

Idea: Each processor can find node (with high probability) 
without traversing links

Warren & Salmon ’93

Key = interleave bits of coordinates

hash(key) = bit-mask of bottom ‘h’ bits
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Administrivia
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Final stretch…

Project checkpoints due already
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“In conclusion…”
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Ideas apply broadly

Physical sciences, e.g.,

Plasmas

Molecular dynamics

Electron-beam lithography device simulation

Fluid dynamics

“Generalized” n-body problems: Talk to your classmate, Ryan Riegel
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Backup slides
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