The n-body problem (3/3)

Prof. Richard Vuduc
Georgia Institute of Technology
CSE/CS 8803 PNA: Parallel Numerical Algorithms
[L.24] Thursday, April 10, 2008

Today's sources

H. CS 267 at UCB (Demmel \& Yelick)

Review:
Tree codes

Approximate long-distance interactions

Idea: Organize particles into a tree

Adaptive quadtree where no square contains more than 1 particle

Source: M. Warren \& J. Salmon, In Supercomputing 1993.

Barnes-Hut algorithm (1986)

H. Algorithm:
F. Build tree
H. For each node, compute center-of-mass and total mass
E. For each particle, traverse tree to compute force on it
H. If $D / R<\theta$, approximate with center-of-mass
F. Else, recurse on node and sum child results

Fast multipole method of Greengard \& Rokhlin (1987)

A. Differences from Barnes-Hut
H. Computes potential, not force
\#. Uses more than center-of- and total-mass \Rightarrow more accurate \& expensive
\#. Accesses fixed set of boxes at every level, independent of "D / R"
E. Increasing accuracy
F. BH: Fixed info / box, more boxes
H. FMM: Fixed no. of boxes; more info / box

FMM computes compact expression for potential

$$
\begin{aligned}
|\mathbf{F}(\mathbf{r})| & =\frac{1}{r^{2}} \\
& \Downarrow \\
\mathbf{F}(\mathbf{r}) & =-\nabla \phi(\mathbf{r})
\end{aligned}
$$

Potential in 3-D

3-D:

$$
\begin{aligned}
\phi(\mathbf{r}) & =-\frac{1}{|\mathbf{r}|}=-\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
\mathbf{F}(\mathbf{r}) & =-\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)=-\left(\frac{x}{r^{3}}, \frac{y}{r^{3}}, \frac{z}{r^{3}}\right)
\end{aligned}
$$

2-D multipole expansion

$$
\begin{aligned}
\alpha_{d} & \equiv \sum_{k=1}^{n} m_{k} z_{k}^{d} \\
\sum_{k=1}^{n} m_{k} \ln \left(z-z_{k}\right) & =M \ln z+\sum_{d=1}^{\infty} \frac{\alpha_{d}}{z^{d}} \quad \begin{array}{l}
\text { Can approx. } \\
\text { by truncation }
\end{array} \\
& \approx M \ln z+\sum_{d=1}^{p} \frac{\alpha_{d}}{z^{d}}+\operatorname{Error}(p) \\
\operatorname{Error}(p) & \sim\left(\frac{\max \left|z_{k}\right|}{|z|}\right)^{p+1}
\end{aligned}
$$

FMM algorithm

H. Build tree

H. Bottom-up traversal to compute Outer(N)
A. Top-down traversal to compute Inner(N)
H. For each leaf N , add contributions of nearest particles directly into Inner(N)

FMM algorithm

A. Build tree
H. Bottom-up traversal to compute Outer(N)
H. Top-down traversal to compute Inner(N)
H. For each leaf N , add contributions of nearest particles directly into Inner(N)

Building Outer(N)

Inner Loop of Build_Outer

e(4)	e(3)
Outer(e(4))	Outer(e(3))
Outer-Shift	Outer-Shift
Outer (n)	
Outer-Shift Outer(e(1))	Outer-Shift
e(1)	e(2)

FMM algorithm

A. Build tree
H. Bottom-up traversal to compute Outer(N)
H. Top-down traversal to compute $\operatorname{Inner}(\mathbf{N})$
H. For each leaf N , add contributions of nearest particles directly into Inner(N)

Building Inner(\mathbf{N})

Interaction_Set(n) for the Fast Multipole Method

i	i	i	i	i	i
i	i	i	i	i	i
i				i	i
i		n		i	i
i				i	i
i	i	i	i	i	i

FMM algorithm

A. Build tree
H. Bottom-up traversal to compute Outer(N)
H. Top-down traversal to compute Inner(N)
H. For each leaf \mathbf{N}, add contributions of nearest particles directly into Inner(N)

Dual-trees

". Build trees for "queries" and "references"
.. Queries = points on which to compute forces
H. References = points contributing to force
H. In physics n-body as we've discussed it, these are the same sets of points
F. For pairs of tree nodes:
". If "bounds" suggest a result for the pair, use it
H. Else, recurse on all pairs

Tree code parallelization

Basic tree-code structure

A. Build tree
H. Traverse from leaves to root to compute outer expansions
:. (In B-H, center-of-mass and total-mass)
I. Traverse from root to leaves to compute any inner expansions
A. Traverse to compute forces
I. Question: Load-balancing for force computation?

Scheme 1: Partition space

\#. Divide space into regions with roughly equal particles in each
H. Assign each region to a processor
A. Each processor computes locally essential tree (LET)

Orthogonal Recursive Bisection

Building a Locally Essential Tree

Scheme 2: Partition tree

". "Cost-zones" (shared memory); "hashed oct-tree" (distributed)
4. Partitioning the tree
.. For each node, estimate work W
\#. Linearize tree (many choices)
". Partition nodes to roughly balance W / p

Using costzones to layout a quadtree on 4 processors
Leaves are color coded by processor color

Scheme 2: Partition tree

". "Cost-zones" (shared memory); "hashed oct-tree" (distributed)
-. Partitioning the tree
H. For each node, estimate work W
H. Linearize tree (many choices)
H. Partition nodes to roughly balance W / p

Linearizing the tree: Hashed quad-/oct-trees

A. Scheme:
H. Assign unique key to each node in tree
: . Compute hash(key) : key \rightarrow global address in hash table
H. Distribute hash table
H. Idea: Each processor can find node (with high probability) without traversing links
:. Warren \& Salmon '93
A. \quad Key = interleave bits of coordinates
H. hash(key) = bit-mask of bottom 'h' bits

Building a key for a hashed Quadtree

Assigning Keys to Quadtree Nodes

10101	10111	11101	11111
10100	10110	11100	11110
10001	10011	11001	11011
10000	10010	11000	11010

Assigning Keys to Quadtree Nodes

10101	10111	11101	11111
10100	10110	11100	11110
10001	10011	11001	11011
10000	10010	11000	11010

Assigning Hash Table Entries to 4 Processors

Administrivia

Final stretch...

.. Project checkpoints due already
"In conclusion..."

Ideas apply broadly

.. Physical sciences, e.g.,
. Plasmas
:. Molecular dynamics
\#. Electron-beam lithography device simulation
.. Fluid dynamics
". "Generalized" n-body problems: Talk to your classmate, Ryan Riegel

Backup slides

