Dual-tree Algorithms in Statistics

Ryan Riegel
rriegel@cc.gatech.edu
Computational Science and Engineering
College of Computing
Georgia Institute of Technology

Outline

(Relevant citations at top of slide)

1. Recap of yesterday: single-tree algorithms
2. Motivation and intuition for dual-tree algorithms
3. Several examples, including demo of All-NN
4. Case study \#1: quasar identification
5. Formal algebraic foundations
6. The general algorithm and its parameters
7. Case study \#2: affinity propagation

Recap

Yesterday, we considered a problem best solved by a single-tree algorithm:

- Given one query and a set of references, determine the sum of forces acting on the query

Recap

Barnes-Hut solution approach:

- Form a spatial tree (e.g. oct-tree) on the references
- For each query, process nodes:
- If $\frac{R}{W}>$ thresh, approximate with center of mass
- Else, recurse on the node and sum up child results

Recap

Barnes-Hut solution approach:

- Form a spatial tree (e.g. oct-tree) on the references
- For each query, process nodes:
- If $\frac{R}{W}>$ thresh, approximate with center of mass
- Else, recurse on the node and sum up child results

Reasoning about the potential function ($\frac{1}{r^{2}}$) permits bounded error via choice of threshold.

Recap

Fast Multi-pole Method is similar:

- Annotate spatial tree with order expansion statistics (fast bottom-up computation)
- For each query, process nodes:
- If $\frac{R}{W}>$ thresh, approximate with order expansion
- Else, recurse on the node and sum up child results

Recap

Fast Multi-pole Method is similar:

- Annotate spatial tree with order expansion statistics (fast bottom-up computation)
- For each query, process nodes:
- If $\frac{R}{W}>$ thresh, approximate with order expansion
- Else, recurse on the node and sum up child results

Added accuracy of order expansion permits more aggressive pruning while still with bounded error.

Motivation

Complexity analysis:

- Tree-building is $O(N \log N): O(N)$ work at each level, $O(\log N)$ levels (in a balanced tree)
- Work is $O(\log N)$ per query; $O(M \log N)$ overall

Motivation

Consider $M \in O(N)$:

Motivation

Consider $M \in O(N)$:

- Theorist's response: "What's the problem?"; overall computation is already $O(N \log N)$ from tree-building

Motivation

Consider $M \in O(N)$:

- Theorist's response: "What’s the problem?"; overall computation is already $O(N \log N)$ from tree-building
- Maybe the tree already exists

Motivation

Consider $M \in O(N)$:

- Theorist's response: "What’s the problem?"; overall computation is already $O(N \log N)$ from tree-building
- Maybe the tree already exists
- Tree-building tends to be very fast

Motivation

Gray and Moore, NIPS 2000

Dual-tree algorithms (a.k.a. generalized N-body methods):

Motivation

Gray and Moore, NIPS 2000

Dual-tree algorithms (a.k.a. generalized N-body methods):

- The most logical extension of single-tree algorithms: form trees for references and queries

Motivation

Gray and Moore, NIPS 2000

Dual-tree algorithms (a.k.a. generalized N-body methods):

- The most logical extension of single-tree algorithms: form trees for references and queries
- After tree-building, time improved $O(N \log N) \rightsquigarrow O(N)$; much better than traditional $O\left(N^{2}\right)$ for nested loops

Motivation

Gray and Moore, NIPS 2000

Dual-tree algorithms (a.k.a. generalized N-body methods):

- The most logical extension of single-tree algorithms: form trees for references and queries
- After tree-building, time improved $O(N \log N) \rightsquigarrow O(N)$; much better than traditional $O\left(N^{2}\right)$ for nested loops
- Yield exact results or have bounded approximation error (absolute or relative)

Motivation

Gray and Moore, NIPS 2000

Dual-tree algorithms (a.k.a. generalized N-body methods):

- The most logical extension of single-tree algorithms: form trees for references and queries
- After tree-building, time improved $O(N \log N) \rightsquigarrow O(N)$; much better than traditional $O\left(N^{2}\right)$ for nested loops
- Yield exact results or have bounded approximation error (absolute or relative)
- Track record: fastest, most accurate methods to date

Нуре
 Gray and Moore, NIPS 2000
 Many other papers

Applications include:

- Nonparametric methods in machine learning:

Нуре
 Gray and Moore, NIPS 2000
 Many other papers

Applications include:

- Nonparametric methods in machine learning:
- The n-point corrleation and range-count

Нуре
 Gray and Moore, NIPS 2000
 Many other papers

Applications include:

- Nonparametric methods in machine learning:
- The n-point corrleation and range-count
- All-k-nearest-neighbors (All-NN)

Hype
 Gray and Moore, NIPS 2000
 Many other papers

Applications include:

- Nonparametric methods in machine learning:
- The n-point corrleation and range-count
- All-k-nearest-neighbors (All-NN)
- Kernel density estimation (KDE)

Hype
 Gray and Moore, NIPS 2000
 Many other papers

Applications include:

- Nonparametric methods in machine learning:
- The n-point corrleation and range-count
- All-k-nearest-neighbors (All-NN)
- Kernel density estimation (KDE)
- Kernel discriminant analysis (KDA)

Нуре

Gray and Moore, NIPS 2000

Many other papers

Applications include:

- Nonparametric methods in machine learning:
- The n-point corrleation and range-count
- All-k-nearest-neighbors (All-NN)
- Kernel density estimation (KDE)
- Kernel discriminant analysis (KDA)
- Local linear regression and others

Нуре

Gray and Moore, NIPS 2000

Many other papers

Applications include:

- Nonparametric methods in machine learning:
- The n-point corrleation and range-count
- All-k-nearest-neighbors (All-NN)
- Kernel density estimation (KDE)
- Kernel discriminant analysis (KDA)
- Local linear regression and others
- More...

Нуре
 Gray and Moore, NIPS 2000
 Many other papers

Applications include:

- Nonparametric methods in machine learning
- Manifold methods via All-NN and others

Hype
 Gray and Moore, NIPS 2000
 Many other papers

Applications include:

- Nonparametric methods in machine learning
- Manifold methods via All-NN and others
- Astronomy: quasar identification via KDA

Hype
 Gray and Moore, NIPS 2000
 Many other papers

Applications include:

- Nonparametric methods in machine learning
- Manifold methods via All-NN and others
- Astronomy: quasar identification via KDA
- Physics: multi-body potentials, fitting wave functions

Нуре
 Gray and Moore, NIPS 2000
 Many other papers

Applications include:

- Nonparametric methods in machine learning
- Manifold methods via All-NN and others
- Astronomy: quasar identification via KDA
- Physics: multi-body potentials, fitting wave functions
- Biology: protein folding, solvent-accessible surfaces

Нуре

Gray and Moore, NIPS 2000

Many other papers

Applications include:

- Nonparametric methods in machine learning
- Manifold methods via All-NN and others
- Astronomy: quasar identification via KDA
- Physics: multi-body potentials, fitting wave functions
- Biology: protein folding, solvent-accessible surfaces
- (I conjecture) products of sparse matrices and other LA

Intuition

Gray and Moore, NIPS 2000

General algorithmic sketch:

- Form spatial trees for both queries and references
- For pairs of tree nodes:
- If "bounds" suggest a result for the pair, use it
- Else, recurse on all pairs of child nodes

Intuition

Gray and Moore, NIPS 2000

General algorithmic sketch:

- Form spatial trees for both queries and references
- For pairs of tree nodes:
- If "bounds" suggest a result for the pair, use it
- Else, recurse on all pairs of child nodes
"Bounds" are often based on min/max distances between nodes; e.g. the range of a kernel applied to the distances.

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$

$$
q \in X \quad r \in X-q
$$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Monochromatic all-nearest-neighbors: map argmin $d(q, r)$ $q \in X \quad r \in X-q$

Ex: Two-point Correlation

Gray and Moore, NIPS 2000

$$
\sum_{x_{1} \in X} \sum_{x_{2} \in X} I\left(d\left(x_{1}, x_{2}\right) \leq h\right)
$$

function $\operatorname{tpc}\left(X_{1}, X_{2}\right)$
if $d^{l}\left(X_{1}, X_{2}\right)>h$, return 0
if $d^{u}\left(X_{1}, X_{2}\right) \leq h$, return $\left|X_{1}\right| \cdot\left|X_{2}\right|$
return $\operatorname{tpc}\left(X_{1}^{L}, X_{2}^{L}\right)+\operatorname{tpc}\left(X_{1}^{L}, X_{2}^{R}\right)$

$$
+\operatorname{tpc}\left(X_{1}^{R}, X_{2}^{L}\right)+\operatorname{tpc}\left(X_{1}^{R}, X_{2}^{R}\right)
$$

Ex: Range Count

Gray and Moore, NIPS 2000

$$
\operatorname{map}_{q \in Q} \sum_{r \in R} I(d(q, r) \leq h)
$$

init $\forall q \in Q^{\text {root }}, a(q)=0$

function $\operatorname{rng}(Q, R)$
if $d^{l}(Q, R)>h$, return
if $d^{u}(Q, R) \leq h$,
$\forall q \in Q, a(q)+=|R|$; return
$\operatorname{rng}\left(Q^{L}, R^{L}\right) ; \operatorname{rng}\left(Q^{L}, R^{R}\right)$
$\operatorname{rng}\left(Q^{R}, R^{L}\right) ; \operatorname{rng}\left(Q^{R}, R^{R}\right)$

Ex: All-nearest-neighbors

Gray and Moore, NIPS 2000

$$
\operatorname{map}_{q \in Q}^{\operatorname{argmin}} d(q, r)
$$

init $\forall q \in Q^{\text {root }}, a(q)=\infty$
function allnn (Q, R)
if $a^{u}(Q) \leq d^{l}(Q, R)$, return
if $(Q, R)=(\{q\},\{r\})$, $a(q)=\min \{a(q), d(q, r)\} ;$ return
prioritize $\left\{R^{1}, R^{2}\right\}=\left\{R^{L}, R^{R}\right\}$ by $d^{l}\left(Q^{L}, \cdot\right)$ $\operatorname{allnn}\left(Q^{L}, R^{1}\right) ; \operatorname{allnn}\left(Q^{L}, R^{2}\right)$
prioritize $\left\{R^{1}, R^{2}\right\}=\left\{R^{L}, R^{R}\right\}$ by $d^{l}\left(Q^{R}, \cdot\right)$ $\operatorname{allnn}\left(Q^{R}, R^{1}\right) ; \operatorname{allnn}\left(Q^{R}, R^{2}\right)$

Ex: Kernel Density Estimation
 Lee et al., NIPS 2005
 Lee and Gray, UAI 2006

$$
\operatorname{map}_{q \in Q} \sum_{r \in R} K_{h}(q, r)
$$

init $\forall q \in Q^{\text {root }}, a(q)=0 ; b=0$
function $\operatorname{kde}(Q, R, b)$
if $K_{h}^{u}(Q, R)-K_{h}^{l}(Q, R)<\left(a^{l}(Q)+b\right) \frac{|R| \cdot \epsilon}{\left|R^{\text {root }}\right|}$,
$\forall q \in Q, a(q)+=K_{h}^{l}(Q, R) ;$ return
prioritize $\left\{R^{1}, R^{2}\right\}=\left\{R^{L}, R^{R}\right\}$ by $d^{l}\left(Q^{L}, \cdot\right)$
$\operatorname{kde}\left(Q^{L}, R^{1}, b+K_{h}^{l}\left(Q^{L}, R^{2}\right)\right) ; \operatorname{kde}\left(Q^{L}, R^{2}, b\right)$
prioritize $\left\{R^{1}, R^{2}\right\}=\left\{R^{L}, R^{R}\right\}$ by $d^{l}\left(Q^{R}, \cdot\right)$
$\operatorname{kde}\left(Q^{R}, R^{1}, b+K_{h}^{l}\left(Q^{R}, R^{2}\right)\right) ; \operatorname{kde}\left(Q^{R}, R^{2}, b\right)$

Ex: Kernel Discriminant Analysis

Gray and Riegel, COMPSTAT 2006
Riegel et al., SIAM Data Mining 2008

$$
\operatorname{map}_{q \in Q}^{\operatorname{argmax}} \frac{P(C)}{\left|R_{C}\right|} \sum_{r \in C_{C}, C_{2}} K_{h_{C}}(q, r)
$$

init $\forall q \in Q^{\text {root }}, a(q)=\delta\left(Q^{\text {root }}, R^{\text {root }}\right)$
enqueue ($\left.Q^{\text {root }}, R^{\text {root }}\right)$
while dequeue $(Q, R) \quad / /$ Main loop of kda
if $a^{l}(Q)>0$ or $a^{u}(Q)<0$, return
$\forall q \in Q, a(q)-=\delta(Q, R)$
$\forall q \in Q^{L}, a(q)+=\delta\left(Q^{L}, R^{L}\right)+\delta\left(Q^{L}, R^{R}\right)$
$\forall q \in Q^{R}, a(q)+=\delta\left(Q^{R}, R^{L}\right)+\delta\left(Q^{R}, R^{R}\right)$
enqueue $\left(Q^{L}, R^{L}\right)$; enqueue $\left(Q^{L}, R^{R}\right)$
enqueue $\left(Q^{R}, R^{L}\right)$; enqueue $\left(Q^{R}, R^{R}\right)$

Case Study: Quasar Identification

Riegel et al., SIAM Data Mining 2008 (Sumbitted) Richards et al., AAS 2008

Mining for quasars in the Sloan Digital Sky Survey:

Case Study: Quasar Identification

 Riegel et al., SIAM Data Mining 2008 (Sumbitted) Richards et al., AAS 2008Mining for quasars in the Sloan Digital Sky Survey:

- Brightest objects in the universe

Case Study: Quasar Identification

 Riegel et al., SIAM Data Mining 2008 (Sumbitted) Richards et al., AAS 2008Mining for quasars in the Sloan Digital Sky Survey:

- Brightest objects in the universe
- Thus, the farthest/oldest we can see

Case Study: Quasar Identification

 Riegel et al., SIAM Data Mining 2008 (Sumbitted) Richards et al., AAS 2008Mining for quasars in the Sloan Digital Sky Survey:

- Brightest objects in the universe
- Thus, the farthest/oldest we can see
- Believed to be active galactic nuclei: giant black holes

Case Study: Quasar Identification

 Riegel et al., SIAM Data Mining 2008 (Sumbitted) Richards et al., AAS 2008Mining for quasars in the Sloan Digital Sky Survey:

- Brightest objects in the universe
- Thus, the farthest/oldest we can see
- Believed to be active galactic nuclei: giant black holes
- Implications for dark matter, dark energy, etc.

Case Study: Quasar Identification

 Riegel et al., SIAM Data Mining 2008 (Sumbitted) Richards et al., AAS 2008Mining for quasars in the Sloan Digital Sky Survey:

- Brightest objects in the universe
- Thus, the farthest/oldest we can see
- Believed to be active galactic nuclei: giant black holes
- Implications for dark matter, dark energy, etc.
- Peplow, Nature 2005 uses one of our catalogs to verify the cosmic magnification effect predicted by relativity

Case Study: Quasar Identification

 Riegel et al., SIAM Data Mining 2008 (Sumbitted) Richards et al., AAS 2008Trained a KDA classifier on 4D spectra data from about 80k known quasars and 400k non-quasars.
Identified about 1 m quasars from 40 m unknown objects.

Case Study: Quasar Identification

 Riegel et al., SIAM Data Mining 2008 (Sumbitted) Richards et al., AAS 2008Trained a KDA classifier on 4D spectra data from about 80k known quasars and 400k non-quasars.

Identified about 1 m quasars from 40 m unknown objects.
Took 640 seconds in serial; half of that was tree-building.

Case Study: Quasar Identification

 Riegel et al., SIAM Data Mining 2008 (Sumbitted) Richards et al., AAS 2008Trained a KDA classifier on 4D spectra data from about 80k known quasars and 400k non-quasars.

Identified about 1 m quasars from 40m unknown objects.
Took 640 seconds in serial; half of that was tree-building. Naïve's takes 380 hours, excluding bandwidth learning.

Case Study: Quasar Identification

 Riegel et al., SIAM Data Mining 2008 (Sumbitted) Richards et al., AAS 2008Trained a KDA classifier on 4D spectra data from about 80k known quasars and 400k non-quasars.
Identified about 1 m quasars from 40 m unknown objects.
Took 640 seconds in serial; half of that was tree-building. Naïve's takes 380 hours, excluding bandwidth learning.

Algorithmic parameters are key to performance:

- Hybrid breadth-depth first expansion
- Epanechnikov kernel (choice of f) to maximize pruning
- Multi-bandwidth algorithm for faster bandwidth fitting

Case Study: Quasar Identification

GNPs, Formally Speaking

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., NIPS 2008 or JMLR 2008

Higher-order reduce problem $\Psi=g \circ \psi$, with

$$
\psi\left(X_{1}, \ldots, X_{n}\right)=\bigotimes_{x_{1} \in X_{1}} \cdots \bigotimes_{x_{n} \in X_{n}} f\left(x_{1}, \ldots, x_{n}\right)
$$

GNPs, Formally Speaking

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., NIPS 2008 or JMLR 2008

Higher-order reduce problem $\Psi=g \circ \psi$, with

$$
\psi\left(X_{1}, \ldots, X_{n}\right)=\bigotimes_{x_{1} \in X_{1}} \cdots \bigotimes_{x_{n} \in X_{n}} f\left(x_{1}, \ldots, x_{n}\right)
$$

subject to decomposability requirement

$$
\psi\left(\ldots, X_{i}, \ldots\right)=\psi\left(\ldots, X_{i}^{L}, \ldots\right) \otimes_{i} \psi\left(\ldots, X_{i}^{R}, \ldots\right)
$$

for all $1 \leq i \leq n$ and partitions $X_{i}^{L} \cup X_{i}^{R}=X_{i}$.

GNPs, Formally Speaking

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., NIPS 2008 or JMLR 2008

Higher-order reduce problem $\Psi=g \circ \psi$, with

$$
\psi\left(X_{1}, \ldots, X_{n}\right)=\bigotimes_{x_{1} \in X_{1}} \cdots \bigotimes_{x_{n} \in X_{n}} f\left(x_{1}, \ldots, x_{n}\right)
$$

subject to decomposability requirement

$$
\psi\left(\ldots, X_{i}, \ldots\right)=\psi\left(\ldots, X_{i}^{L}, \ldots\right) \otimes_{i} \psi\left(\ldots, X_{i}^{R}, \ldots\right)
$$

for all $1 \leq i \leq n$ and partitions $X_{i}^{L} \cup X_{i}^{R}=X_{i}$.

We'll also need some means of bounding the results of ψ.

Decomposability

(Planned) Riegel et al., NIPS 2008 or JMLR 2008
Decomposability is restrictive; always possible for problems formed by combinations of map and some one other \otimes.

Decomposability

(Planned) Riegel et al., NIPS 2008 or JMLR 2008

Decomposability is restrictive; always possible for problems formed by combinations of map and some one other \otimes.

It is equivalent to

for all permutations p of the set $\{1, \ldots, n\}$,

Decomposability

(Planned) Riegel et al., NIPS 2008 or JMLR 2008

Decomposability is restrictive; always possible for problems formed by combinations of map and some one other \otimes.

It is equivalent to

for all permutations p of the set $\{1, \ldots, n\}$, and to

$$
\begin{aligned}
& \left(\psi\left(X_{i}^{L}, X_{j}^{L}\right) \otimes_{i} \psi\left(X_{i}^{R}, X_{j}^{L}\right)\right) \otimes_{j}\left(\psi\left(X_{i}^{L}, X_{j}^{R}\right) \otimes_{i} \psi\left(X_{i}^{R}, X_{j}^{R}\right)\right) \\
& \quad=\left(\psi\left(X_{i}^{L}, X_{j}^{L}\right) \otimes_{j} \psi\left(X_{i}^{L}, X_{j}^{R}\right)\right) \otimes_{i}\left(\psi\left(X_{i}^{R}, X_{j}^{L}\right) \otimes_{j} \psi\left(X_{i}^{R}, X_{j}^{R}\right)\right)
\end{aligned}
$$

Decomposability

$$
\psi(X, Y)=\bigodot_{x \in X} \bigotimes_{y \in Y} f(x, y)
$$

$$
\begin{aligned}
& \left(f\left(x_{1}, y_{1}\right) \otimes f\left(x_{1}, y_{2}\right) \otimes \cdots \otimes f\left(x_{1}, y_{M}\right)\right) \\
& \quad \odot \\
& \left(f\left(x_{2}, y_{1}\right) \otimes f\left(x_{2}, y_{2}\right) \otimes \cdots \otimes f\left(x_{2}, y_{M}\right)\right) \\
& \quad \odot \\
& \quad \vdots \\
& \quad \odot \\
& \left(f\left(x_{N}, y_{1}\right) \otimes f\left(x_{N}, y_{2}\right) \otimes \cdots \otimes f\left(x_{N}, y_{M}\right)\right)
\end{aligned}
$$

Decomposability

$$
\psi(X, Y)=\psi\left(X, Y^{L}\right) \otimes \psi\left(X, Y^{R}\right)
$$

$$
\left(\begin{array}{c}
f\left(x_{1}, y_{1}\right) \\
\odot \\
f\left(x_{2}, y_{1}\right) \\
\odot \\
\vdots \\
\odot \\
f\left(x_{N}, y_{1}\right)
\end{array}\right) \otimes\left(\begin{array}{c}
\left(f\left(x_{1}, y_{2}\right) \otimes \cdots \otimes f\left(x_{1}, y_{M}\right)\right) \\
\odot \\
\left(f\left(x_{2}, y_{2}\right) \otimes \cdots \otimes f\left(x_{2}, y_{M}\right)\right) \\
\odot \\
\vdots \\
\odot \\
\left(f\left(x_{N}, y_{2}\right) \otimes \cdots \otimes f\left(x_{N}, y_{M}\right)\right)
\end{array}\right)
$$

Transforming Problems into GNPs

(Planned) Riegel et al., NIPS 2008 or JMLR 2008

 ("Serial" GNPs.) Decomposable or not,$$
g_{1}\left(\bigotimes_{x_{1} \in X_{1}} g_{2}\left(\bigotimes_{x_{2} \in X_{2}} \cdots g_{n}\left(\bigotimes_{x_{n} \in X_{n}} f\left(x_{1}, \ldots, x_{n}\right)\right) \cdots\right)\right)
$$

may be transformed into nested GNPs by replacing every other operator with map and factoring intermediate g_{i} out.

Transforming Problems into GNPs

(Planned) Riegel et al., NIPS 2008 or JMLR 2008
("Serial" GNPs.) Decomposable or not,

$$
g_{1}\left(\bigotimes_{x_{1} \in X_{1}} g_{2}\left(\bigotimes_{x_{2} \in X_{2}}^{\bigotimes_{2} \cdots g_{n}}\left(\bigotimes_{x_{n} \in X_{n}} f\left(x_{1}, \ldots, x_{n}\right)\right) \cdots\right)\right)
$$

may be transformed into nested GNPs by replacing every other operator with map and factoring intermediate g_{i} out. ("Parallel" GNPs.) Also GNP-able are problems such as:

$$
\operatorname{map}_{i} \frac{\sum_{j} w_{i j} K\left(x_{i}, x_{j}\right)}{\sum_{j} K\left(x_{i}, x_{j}\right)}
$$

Transforming Problems into GNPs

(Planned) Riegel et al., NIPS 2008 or JMLR 2008
("Serial" GNPs.) Decomposable or not,

$$
g_{1}\left(\bigotimes_{x_{1} \in X_{1}} g_{2}\left(\underset{x_{2} \in X_{2}}{\bigotimes_{2} \cdots g_{n}}\left(\bigotimes_{x_{n} \in X_{n}} f\left(x_{1}, \ldots, x_{n}\right)\right) \cdots\right)\right)
$$

may be transformed into nested GNPs by replacing every other operator with map and factoring intermediate g_{i} out. ("Parallel" GNPs.) Also GNP-able are problems such as:

$$
\operatorname{map}_{i} \frac{\sum_{j} w_{i j} K\left(x_{i}, x_{j}\right)}{\sum_{j} K\left(x_{i}, x_{j}\right)}
$$

("Multi" GNPs.) Wrap problem with map to vary parameter.

The Algorithm

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008
"One algorithm to solve them all":

$$
\begin{aligned}
& \psi\left(X_{1}, \ldots, X_{n}\right) \\
& \\
& \leftarrow\left\{\begin{array}{l}
a \text { if bounds prove it is safe to prune to } a, \\
f\left(x_{1}, \ldots, x_{n}\right) \text { if each } X_{i}=\left\{x_{i}\right\}, \text { i.e. is leaf, } \\
\psi\left(\ldots, X_{i}^{L}, \ldots\right) \otimes_{i} \psi\left(\ldots, X_{i}^{R}, \ldots\right) \text { otherwise }
\end{array}\right.
\end{aligned}
$$

The Algorithm

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008
"One algorithm to solve them all":

$$
\begin{aligned}
& \psi\left(X_{1}, \ldots, X_{n}\right) \\
& \\
& \leftarrow\left\{\begin{array}{l}
a \text { if bounds prove it is safe to prune to } a, \\
f\left(x_{1}, \ldots, x_{n}\right) \text { if each } X_{i}=\left\{x_{i}\right\}, \text { i.e. is leaf, } \\
\psi\left(\ldots, X_{i}^{L}, \ldots\right) \otimes_{i} \psi\left(\ldots, X_{i}^{R}, \ldots\right) \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Regarding speed, pruning is everything.

Pruning

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008

Roughly, three kinds:

Pruning

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008

Roughly, three kinds:

- Intrinsic pruning depends only on bounds of $\psi\left(X_{1}, \ldots, X_{n}\right)$ (ex: n-point correlation)

Pruning

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008

Roughly, three kinds:

- Intrinsic pruning depends only on bounds of $\psi\left(X_{1}, \ldots, X_{n}\right)$ (ex: n-point correlation)
- Extrinsic pruning depends on bounds of $\psi\left(X_{1}, \ldots, X_{n}\right)$ and past work (ex: all-nearest-neighbors)

Pruning

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008

Roughly, three kinds:

- Intrinsic pruning depends only on bounds of $\psi\left(X_{1}, \ldots, X_{n}\right)$ (ex: n-point correlation)
- Extrinsic pruning depends on bounds of $\psi\left(X_{1}, \ldots, X_{n}\right)$ and past work (ex: all-nearest-neighbors)
- Termination pruning depends only on past work (ex: kernel discriminant analysis)

Pruning

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008

Roughly, three kinds:

- Intrinsic pruning depends only on bounds of $\psi\left(X_{1}, \ldots, X_{n}\right)$ (ex: n-point correlation)
- Extrinsic pruning depends on bounds of $\psi\left(X_{1}, \ldots, X_{n}\right)$ and past work (ex: all-nearest-neighbors)
- Termination pruning depends only on past work (ex: kernel discriminant analysis)
Approximation is a form of extrinsic pruning.

Pruning

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008

Roughly, three kinds:

- Intrinsic pruning depends only on bounds of $\psi\left(X_{1}, \ldots, X_{n}\right)$ (ex: n-point correlation)
- Extrinsic pruning depends on bounds of $\psi\left(X_{1}, \ldots, X_{n}\right)$ and past work (ex: all-nearest-neighbors)
- Termination pruning depends only on past work (ex: kernel discriminant analysis)
Approximation is a form of extrinsic pruning.
Kind of pruning determined by problem specification. Ease of pruning influenced by algorithmic parameters.

Algorithmic Parameters

An implementation must answer these questions:

Algorithmic Parameters

An implementation must answer these questions:

- How to partition data? E.g. what kind of trees to use? Non-binary? No tree (ex: Baeza-Yeats)?

Algorithmic Parameters

An implementation must answer these questions:

- How to partition data? E.g. what kind of trees to use? Non-binary? No tree (ex: Baeza-Yeats)?
- What expansion pattern? Depth-first? Breath-first? Something else? Which branches first, heuristically?

Algorithmic Parameters

An implementation must answer these questions:

- How to partition data? E.g. what kind of trees to use? Non-binary? No tree (ex: Baeza-Yeats)?
- What expansion pattern? Depth-first? Breath-first? Something else? Which branches first, heuristically?
- (Higher-level.) What scale of data structures to use? Does the problem fit in RAM? Need to be parallel?

Trees

Gray and Lee's Proximity Project, 2005

Many options: $k d$-trees, ball trees, cover trees, sorted lists.

Trees

Gray and Lee's Proximity Project, 2005

Many options: $k d$-trees, ball trees, cover trees, sorted lists.
Aside: tree building constitutes graph partitioning and may (attempt to) minimize some loss function.

Expansion Pattern

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008

Describes the order we replace

$$
\psi\left(\ldots, X_{i}, \ldots\right) \leftarrow \psi\left(\ldots, X_{i}^{L}, \ldots\right) \otimes_{i} \psi\left(\ldots, X_{i}^{R}, \ldots\right)
$$

Expansion Pattern

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008

Describes the order we replace

$$
\psi\left(\ldots, X_{i}, \ldots\right) \leftarrow \psi\left(\ldots, X_{i}^{L}, \ldots\right) \otimes_{i} \psi\left(\ldots, X_{i}^{R}, \ldots\right)
$$

- DFS has least overhead, sensitive to heuristic

Expansion Pattern

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008

Describes the order we replace

$$
\psi\left(\ldots, X_{i}, \ldots\right) \leftarrow \psi\left(\ldots, X_{i}^{L}, \ldots\right) \otimes_{i} \psi\left(\ldots, X_{i}^{R}, \ldots\right)
$$

- DFS has least overhead, sensitive to heuristic
- BFS has more overhead, less senitive to heuristic

Expansion Pattern

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008

Describes the order we replace

$$
\psi\left(\ldots, X_{i}, \ldots\right) \leftarrow \psi\left(\ldots, X_{i}^{L}, \ldots\right) \otimes_{i} \psi\left(\ldots, X_{i}^{R}, \ldots\right)
$$

- DFS has least overhead, sensitive to heuristic
- BFS has more overhead, less senitive to heuristic
- Priority queue has highest overhead but makes the most of its heuristic; adds need for operators to have inverses (i.e. to form groups)

Expansion Pattern

Boyer, Riegel, and Gray's THOR Project (Planned) Riegel et al., ICML 2008 or JMLR 2008

Describes the order we replace

$$
\psi\left(\ldots, X_{i}, \ldots\right) \leftarrow \psi\left(\ldots, X_{i}^{L}, \ldots\right) \otimes_{i} \psi\left(\ldots, X_{i}^{R}, \ldots\right)
$$

- DFS has least overhead, sensitive to heuristic
- BFS has more overhead, less senitive to heuristic
- Priority queue has highest overhead but makes the most of its heuristic; adds need for operators to have inverses (i.e. to form groups)
Hybrid breadth-depth first pattern: achieves breadth-first behavior in $O(N)$ space for query-reference problems.

Problem Scale

Boyer, Riegel, and Gray's THOR Project

Simple in-memory data structures, memory-mapped files, or parallelized/distributed data management.

Some observations:

Problem Scale

Boyer, Riegel, and Gray's THOR Project

Simple in-memory data structures, memory-mapped files, or parallelized/distributed data management.

Some observations:

- All GNPs are parallelizable, some more so than others

Problem Scale

Boyer, Riegel, and Gray's THOR Project

Simple in-memory data structures, memory-mapped files, or parallelized/distributed data management.

Some observations:

- All GNPs are parallelizable, some more so than others
- All GNPs can benefit greatly from multicore processors

Problem Scale

Boyer, Riegel, and Gray's THOR Project

Simple in-memory data structures, memory-mapped files, or parallelized/distributed data management.

Some observations:

- All GNPs are parallelizable, some more so than others
- All GNPs can benefit greatly from multicore processors
- Opportunity to use cache-oblivious trees (vEB, etc.)

THOR Coding Framework

Boyer, Riegel, and Gray's THOR Project

Speed-oriented C++ framework for problems of forms

$$
\operatorname{map}_{q \in Q} g\left(\bigotimes_{r \in R} f(q, r)\right) \quad \text { and } \quad g\left(\bigotimes_{x_{1} \in X_{1}} \bigotimes_{x_{2} \in X_{2}} f\left(x_{1}, x_{2}\right)\right)
$$

THOR Coding Framework

Boyer, Riegel, and Gray's THOR Project

Speed-oriented C++ framework for problems of forms

$$
\operatorname{map}_{q \in Q} g\left(\bigotimes_{r \in R} f(q, r)\right) \quad \text { and } \quad g\left(\bigotimes_{x_{1} \in X_{1}} \bigotimes_{x_{2} \in X_{2}} f\left(x_{1}, x_{2}\right)\right)
$$

- Coding entails filling a few dozen function stubs

THOR Coding Framework

Boyer, Riegel, and Gray's THOR Project

Speed-oriented C++ framework for problems of forms

$$
\operatorname{map}_{q \in Q} g\left(\bigotimes_{r \in R} f(q, r)\right) \quad \text { and } \quad g\left(\bigotimes_{x_{1} \in X_{1}} \bigotimes_{x_{2} \in X_{2}} f\left(x_{1}, x_{2}\right)\right)
$$

- Coding entails filling a few dozen function stubs
- Easy variation of tree type, expansion pattern, etc.

THOR Coding Framework

Boyer, Riegel, and Gray's THOR Project

Speed-oriented C++ framework for problems of forms

$$
\operatorname{map}_{q \in Q} g\left(\bigotimes_{r \in R} f(q, r)\right) \quad \text { and } \quad g\left(\bigotimes_{x_{1} \in X_{1}} \bigotimes_{x_{2} \in X_{2}} f\left(x_{1}, x_{2}\right)\right)
$$

- Coding entails filling a few dozen function stubs
- Easy variation of tree type, expansion pattern, etc.
- Automatic parallelization (multicore and distributed)

Case Study: Affinity Propagation

(Planned) Riegel et al., NIPS 2008 or JMLR 2008

Recent clustering method:

Case Study: Affinity Propagation

(Planned) Riegel et al., NIPS 2008 or JMLR 2008

Recent clustering method:

- Frey and Dueck, Science 2007

Case Study: Affinity Propagation

 (Planned) Riegel et al., NIPS 2008 or JMLR 2008Recent clustering method:

- Frey and Dueck, Science 2007
- Finds exemplars in a data set in attempt to minimize square reconstruction error

Case Study: Affinity Propagation

 (Planned) Riegel et al., NIPS 2008 or JMLR 2008Recent clustering method:

- Frey and Dueck, Science 2007
- Finds exemplars in a data set in attempt to minimize square reconstruction error
- Number of clusters to find is unspecified, but influenced by a "preference" parameter

Case Study: Affinity Propagation

 (Planned) Riegel et al., NIPS 2008 or JMLR 2008Recent clustering method:

- Frey and Dueck, Science 2007
- Finds exemplars in a data set in attempt to minimize square reconstruction error
- Number of clusters to find is unspecified, but influenced by a "preference" parameter
- Presented as fast alternative to zillions of random restarts of k-centers algorithm

Case Study: Affinity Propagation

 (Planned) Riegel et al., NIPS 2008 or JMLR 2008For similarity matrix S (pref along diag), update R and A

$$
\begin{aligned}
& r_{i j} \longleftarrow s_{i j}-\max _{j^{\prime} \neq j}\left(a_{i j^{\prime}}+s_{i j^{\prime}}\right) \\
& a_{i j} \longleftarrow \kappa_{i j}^{-}\left(\sum_{i^{\prime} \neq i} \kappa_{i^{\prime} j}^{+}\left(r_{i^{\prime} j}\right)\right)
\end{aligned}
$$

Case Study: Affinity Propagation

 (Planned) Riegel et al., NIPS 2008 or JMLR 2008For similarity matrix S (pref along diag), update R and A

$$
\begin{aligned}
& r_{i j} \longleftarrow s_{i j}-\max _{j^{\prime} \neq j}\left(a_{i j^{\prime}}+s_{i j^{\prime}}\right) \\
& a_{i j} \longleftarrow \kappa_{i j}^{-}\left(\sum_{i^{\prime} \neq i} \kappa_{i^{\prime} j}^{+}\left(r_{i^{\prime} j}\right)\right)
\end{aligned}
$$

Damping of R and A helps convergence.

Case Study: Affinity Propagation

(Planned) Riegel et al., NIPS 2008 or JMLR 2008

Naïvely $O\left(N^{2}\right)$; can be improved if S is made to be sparse, but this introduces uncontrolled error.

Case Study: Affinity Propagation

 (Planned) Riegel et al., NIPS 2008 or JMLR 2008Naïvely $O\left(N^{2}\right)$; can be improved if S is made to be sparse, but this introduces uncontrolled error.

Alterately, if no damping, we can rearrange into GNPs

$$
\begin{aligned}
& \alpha_{i} \leftarrow \underset{j}{\operatorname{argmax}} 2\left(\kappa_{i j}^{+}\left(\kappa_{i j}^{+}\left(s_{i j}+\alpha_{i[j]}\right)-\rho_{j}\right)-s_{i j}\right) \\
& \rho_{j} \leftarrow \sum_{i} \kappa_{i j}^{+}\left(s_{i j}+\alpha_{i[j]}\right)
\end{aligned}
$$

Case Study: Affinity Propagation

 (Planned) Riegel et al., NIPS 2008 or JMLR 2008Naïvely $O\left(N^{2}\right)$; can be improved if S is made to be sparse, but this introduces uncontrolled error.

Alterately, if no damping, we can rearrange into GNPs

$$
\begin{aligned}
& \alpha_{i} \leftarrow \underset{j}{\operatorname{argmax}} 2\left(\kappa_{i j}^{+}\left(\kappa_{i j}^{+}\left(s_{i j}+\alpha_{i[j]}\right)-\rho_{j}\right)-s_{i j}\right) \\
& \rho_{j} \leftarrow \sum_{i} \kappa_{i j}^{+}\left(s_{i j}+\alpha_{i[j]}\right)
\end{aligned}
$$

Can pull other tricks to get things to converge.

Case Study: Affinity Propagation

Affinity Propagation Runtime

fin.

