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Outline
(Relevant citations at top of slide)

1. Recap of yesterday: single-tree algorithms

2. Motivation and intuition for dual-tree algorithms

3. Several examples, including demo of All-NN

4. Case study #1: quasar identification

5. Formal algebraic foundations

6. The general algorithm and its parameters

7. Case study #2: affinity propagation
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Recap

Yesterday, we considered a problem best solved by a
single-tree algorithm:

Given one query and a set of references, determine the
sum of forces acting on the query
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Recap

Barnes-Hut solution approach:

Form a spatial tree (e.g. oct-tree) on the references

For each query, process nodes:

If R
W
> thresh, approximate with center of mass

Else, recurse on the node and sum up child results

Reasoning about the potential function ( 1
r2 ) permits

bounded error via choice of threshold.
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Recap

Fast Multi-pole Method is similar:

Annotate spatial tree with order expansion statistics
(fast bottom-up computation)

For each query, process nodes:

If R
W
> thresh, approximate with order expansion

Else, recurse on the node and sum up child results

Added accuracy of order expansion permits more
aggressive pruning while still with bounded error.
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Motivation

Complexity analysis:

Tree-building is O(N logN): O(N) work at each level,
O(logN) levels (in a balanced tree)

Work is O(logN) per query; O(M logN) overall
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Motivation

Consider M ∈ O(N):

Theorist’s response: “What’s the problem?”; overall
computation is already O(N logN) from tree-building

Maybe the tree already exists

Tree-building tends to be very fast
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Motivation
Gray and Moore, NIPS 2000

Dual-tree algorithms (a.k.a. generalized N -body methods):

The most logical extension of single-tree algorithms:
form trees for references and queries

After tree-building, time improved O(N logN) O(N);
much better than traditional O(N2) for nested loops

Yield exact results or have bounded approximation error
(absolute or relative)

Track record: fastest, most accurate methods to date
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Hype
Gray and Moore, NIPS 2000

Many other papers

Applications include:

Nonparametric methods in machine learning:

The n-point corrleation and range-count
All-k-nearest-neighbors (All-NN)
Kernel density estimation (KDE)
Kernel discriminant analysis (KDA)
Local linear regression and others
More...
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Hype
Gray and Moore, NIPS 2000

Many other papers

Applications include:

Nonparametric methods in machine learning

Manifold methods via All-NN and others

Astronomy: quasar identification via KDA

Physics: multi-body potentials, fitting wave functions

Biology: protein folding, solvent-accessible surfaces

(I conjecture) products of sparse matrices and other LA
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Intuition
Gray and Moore, NIPS 2000

General algorithmic sketch:

Form spatial trees for both queries and references

For pairs of tree nodes:
If “bounds” suggest a result for the pair, use it
Else, recurse on all pairs of child nodes

“Bounds” are often based on min/max distances between
nodes; e.g. the range of a kernel applied to the distances.
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Monochromatic all-nearest-neighbors: map
q∈X

argmin
r∈X−q

d(q, r)
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Ex: Two-point Correlation
Gray and Moore, NIPS 2000

∑

x1∈X

∑

x2∈X

I(d(x1, x2) ≤ h)

function tpc(X1, X2)

if dl(X1, X2) > h, return 0

if du(X1, X2) ≤ h, return |X1| · |X2|

return tpc(XL
1 , X

L
2 ) + tpc(XL

1 , X
R
2 )

+ tpc(XR
1 , X

L
2 ) + tpc(XR

1 , X
R
2 )
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Ex: Range Count
Gray and Moore, NIPS 2000

map
q∈Q

∑

r∈R

I(d(q, r) ≤ h)

init ∀q ∈ Qroot, a(q) = 0

function rng(Q,R)

if dl(Q,R) > h, return

if du(Q,R) ≤ h,

∀q ∈ Q, a(q) += |R|; return

rng(QL, RL); rng(QL, RR)

rng(QR, RL); rng(QR, RR)
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Ex: All-nearest-neighbors
Gray and Moore, NIPS 2000

map
q∈Q

argmin
r∈R

d(q, r)

init ∀q ∈ Qroot, a(q) =∞

function allnn(Q,R)

if au(Q) ≤ dl(Q,R), return

if (Q,R) = ({q}, {r}),

a(q) = min{a(q), d(q, r)}; return

prioritize {R1, R2} = {RL, RR} by dl(QL, ·)

allnn(QL, R1); allnn(QL, R2)

prioritize {R1, R2} = {RL, RR} by dl(QR, ·)

allnn(QR, R1); allnn(QR, R2)
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Ex: Kernel Density Estimation
Lee et al., NIPS 2005

Lee and Gray, UAI 2006

map
q∈Q

∑

r∈R

Kh(q, r)

init ∀q ∈ Qroot, a(q) = 0; b = 0

function kde(Q,R, b)

if Ku
h(Q,R)−K l

h(Q,R) < (al(Q) + b) |R|·ε
|Rroot| ,

∀q ∈ Q, a(q) += K l
h(Q,R); return

prioritize {R1, R2} = {RL, RR} by dl(QL, ·)

kde(QL, R1, b+K l
h(QL, R2)); kde(QL, R2, b)

prioritize {R1, R2} = {RL, RR} by dl(QR, ·)

kde(QR, R1, b+K l
h(QR, R2)); kde(QR, R2, b)
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Ex: Kernel Discriminant Analysis
Gray and Riegel, COMPSTAT 2006

Riegel et al., SIAM Data Mining 2008

map
q∈Q

argmax
C∈{C1,C2}

P (C)

|RC |

∑

r∈RC

KhC
(q, r)

init ∀q ∈ Qroot, a(q) = δ(Qroot, Rroot)

enqueue(Qroot, Rroot)

while dequeue(Q,R) // Main loop of kda

if al(Q) > 0 or au(Q) < 0, return

∀q ∈ Q, a(q) −= δ(Q,R)

∀q ∈ QL, a(q) += δ(QL, RL) + δ(QL, RR)

∀q ∈ QR, a(q) += δ(QR, RL) + δ(QR, RR)

enqueue(QL, RL); enqueue(QL, RR)

enqueue(QR, RL); enqueue(QR, RR)
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Case Study: Quasar Identification
Riegel et al., SIAM Data Mining 2008
(Sumbitted) Richards et al., AAS 2008

Mining for quasars in the Sloan Digital Sky Survey:

Brightest objects in the universe

Thus, the farthest/oldest we can see

Believed to be active galactic nuclei: giant black holes

Implications for dark matter, dark energy, etc.

Peplow, Nature 2005 uses one of our catalogs to verify
the cosmic magnification effect predicted by relativity
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Case Study: Quasar Identification
Riegel et al., SIAM Data Mining 2008
(Sumbitted) Richards et al., AAS 2008

Trained a KDA classifier on 4D spectra data from about 80k
known quasars and 400k non-quasars.

Identified about 1m quasars from 40m unknown objects.

Took 640 seconds in serial; half of that was tree-building.
Naïve’s takes 380 hours, excluding bandwidth learning.

Algorithmic parameters are key to performance:

Hybrid breadth-depth first expansion

Epanechnikov kernel (choice of f ) to maximize pruning

Multi-bandwidth algorithm for faster bandwidth fitting
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Epanechnikov kernel (choice of f ) to maximize pruning

Multi-bandwidth algorithm for faster bandwidth fitting
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Case Study: Quasar Identification
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GNPs, Formally Speaking
Boyer, Riegel, and Gray’s THOR Project

(Planned) Riegel et al., NIPS 2008 or JMLR 2008

Higher-order reduce problem Ψ = g ◦ ψ, with

ψ(X1, . . . , Xn) =
⊗

1
x1∈X1

· · ·
⊗

n
xn∈Xn

f(x1, . . . , xn)

subject to decomposability requirement

ψ(. . . , Xi, . . .) = ψ(. . . , XL
i , . . .)⊗i ψ(. . . , XR

i , . . .)

for all 1 ≤ i ≤ n and partitions XL
i ∪X

R
i = Xi.

We’ll also need some means of bounding the results of ψ.
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Decomposability
(Planned) Riegel et al., NIPS 2008 or JMLR 2008

Decomposability is restrictive; always possible for problems
formed by combinations of map and some one other ⊗.

It is equivalent to
⊗

1
x1∈X1

· · ·
⊗

n
xn∈Xn

f(x1, · · · , xn) =
⊗

p1

xp1
∈Xp1

· · ·
⊗

pn

xpn∈Xpn

f(x1, · · · , xn)

for all permutations p of the set {1, . . . , n}, and to

(ψ(XL
i , X

L
j )⊗i ψ(XR

i , X
L
j ))⊗j (ψ(XL

i , X
R
j )⊗i ψ(XR

i , X
R
j ))

= (ψ(XL
i , X

L
j )⊗j ψ(XL

i , X
R
j ))⊗i (ψ(XR

i , X
L
j )⊗j ψ(XR

i , X
R
j ))
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Decomposability

ψ(X, Y ) =
⊙

x∈X

⊗

y∈Y

f(x, y)

( f(x1, y1) ⊗ f(x1, y2) ⊗ · · ·⊗ f(x1, yM ) )

�

( f(x2, y1) ⊗ f(x2, y2) ⊗ · · ·⊗ f(x2, yM ) )

�
...
�

( f(xN , y1)⊗ f(xN , y2)⊗ · · ·⊗ f(xN , yM ) )
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Decomposability

ψ(X, Y ) = ψ(X, YL)⊗ ψ(X, YR)



























f(x1, y1)

�

f(x2, y1)

�
...
�

f(xN , y1)



























⊗



























( f(x1, y2) ⊗ · · ·⊗ f(x1, yM ) )

�

( f(x2, y2) ⊗ · · ·⊗ f(x2, yM ) )

�
...
�

( f(xN , y2)⊗ · · ·⊗ f(xN , yM ) )


























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Transforming Problems into GNPs
(Planned) Riegel et al., NIPS 2008 or JMLR 2008

(“Serial” GNPs.) Decomposable or not,

g1

(

⊗

1
x1∈X1

g2

(

⊗

2
x2∈X2

· · · gn

(

⊗

n
xn∈Xn

f(x1, . . . , xn)
)

· · ·
))

may be transformed into nested GNPs by replacing every
other operator with map and factoring intermediate gi out.

(“Parallel” GNPs.) Also GNP-able are problems such as:

map
i

∑

j wijK(xi, xj)
∑

j K(xi, xj)

(“Multi” GNPs.) Wrap problem with map to vary parameter.
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The Algorithm
Boyer, Riegel, and Gray’s THOR Project

(Planned) Riegel et al., ICML 2008 or JMLR 2008

“One algorithm to solve them all”:

ψ(X1, . . . , Xn)

←











a if bounds prove it is safe to prune to a,
f(x1, . . . , xn) if each Xi = {xi}, i.e. is leaf,
ψ(. . . , XL

i , . . .)⊗i ψ(. . . , XR
i , . . .) otherwise

Regarding speed, pruning is everything.
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Pruning
Boyer, Riegel, and Gray’s THOR Project

(Planned) Riegel et al., ICML 2008 or JMLR 2008

Roughly, three kinds:

Intrinsic pruning depends only on bounds of
ψ(X1, . . . , Xn) (ex: n-point correlation)

Extrinsic pruning depends on bounds of ψ(X1, . . . , Xn)
and past work (ex: all-nearest-neighbors)

Termination pruning depends only on past work (ex:
kernel discriminant analysis)

Approximation is a form of extrinsic pruning.

Kind of pruning determined by problem specification.
Ease of pruning influenced by algorithmic parameters.
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Algorithmic Parameters

An implementation must answer these questions:

How to partition data? E.g. what kind of trees to use?
Non-binary? No tree (ex: Baeza-Yeats)?

What expansion pattern? Depth-first? Breath-first?
Something else? Which branches first, heuristically?

(Higher-level.) What scale of data structures to use?
Does the problem fit in RAM? Need to be parallel?
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Trees
Gray and Lee’s Proximity Project, 2005

Many options: kd-trees, ball trees, cover trees, sorted lists.

Aside: tree building constitutes graph partitioning and may
(attempt to) minimize some loss function.
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Expansion Pattern
Boyer, Riegel, and Gray’s THOR Project

(Planned) Riegel et al., ICML 2008 or JMLR 2008

Describes the order we replace

ψ(. . . , Xi, . . .)← ψ(. . . , XL
i , . . .)⊗i ψ(. . . , XR

i , . . .)

DFS has least overhead, sensitive to heuristic

BFS has more overhead, less senitive to heuristic

Priority queue has highest overhead but makes the
most of its heuristic; adds need for operators to have
inverses (i.e. to form groups)

Hybrid breadth-depth first pattern: achieves breadth-first
behavior in O(N) space for query-reference problems.
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Problem Scale
Boyer, Riegel, and Gray’s THOR Project

Simple in-memory data structures, memory-mapped files,
or parallelized/distributed data management.

Some observations:

All GNPs are parallelizable, some more so than others

All GNPs can benefit greatly from multicore processors

Opportunity to use cache-oblivious trees (vEB, etc.)
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THOR Coding Framework
Boyer, Riegel, and Gray’s THOR Project

Speed-oriented C++ framework for problems of forms

map
q∈Q

g
(

⊗

r∈R

f(q, r)
)

and g
(

⊗

x1∈X1

⊗

x2∈X2

f(x1, x2)
)

Coding entails filling a few dozen function stubs

Easy variation of tree type, expansion pattern, etc.

Automatic parallelization (multicore and distributed)
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Case Study: Affinity Propagation
(Planned) Riegel et al., NIPS 2008 or JMLR 2008

Recent clustering method:

Frey and Dueck, Science 2007

Finds exemplars in a data set in attempt to minimize
square reconstruction error

Number of clusters to find is unspecified, but influenced
by a “preference” parameter

Presented as fast alternative to zillions of random
restarts of k-centers algorithm
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restarts of k-centers algorithm
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Case Study: Affinity Propagation
(Planned) Riegel et al., NIPS 2008 or JMLR 2008

For similarity matrix S (pref along diag), update R and A

rij ← sij −max
j′ 6=j

(aij′ + sij′)

aij ← κ−ij

(

∑

i′ 6=i

κ+
i′j(ri′j)

)

Damping of R and A helps convergence.
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Case Study: Affinity Propagation
(Planned) Riegel et al., NIPS 2008 or JMLR 2008

Naïvely O(N2); can be improved if S is made to be sparse,
but this introduces uncontrolled error.

Alterately, if no damping, we can rearrange into GNPs

αi ← argmax2
j

(κ+
ij(κ

+
ij(sij + αi[j])− ρj)− sij)

ρj ←
∑

i

κ+
ij(sij + αi[j])

Can pull other tricks to get things to converge.
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Case Study: Affinity Propagation
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