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Outline

(Relevant citations at top of slide) T

Recap of yesterday: single-tree algorithms
Motivation and intuition for dual-tree algorithms
Several examples, including demo of All-NN
Case study #1: quasar identification

Formal algebraic foundations

The general algorithm and its parameters
Case study #2: affinity propagation
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Recap

Yesterday, we considered a problem best solved by a
single-tree algorithm:

# Given one query and a set of references, determine the
sum of forces acting on the query
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Recap
B -

Barnes-Hut solution approach:
# Form a spatial tree (e.g. oct-tree) on the references

#® For each query, process nodes:
s If % > thresh, approximate with center of mass
s Else, recurse on the node and sum up child results
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Recap

Barnes-Hut solution approach:
# Form a spatial tree (e.g. oct-tree) on the references

#® For each query, process nodes:
s If % > thresh, approximate with center of mass
s Else, recurse on the node and sum up child results

Reasoning about the potential function (7%2) permits
bounded error via choice of threshold.
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Recap
B -

Fast Multi-pole Method is similar:

# Annotate spatial tree with order expansion statistics
(fast bottom-up computation)

# For each guery, process nodes:
s If £ > thresh, approximate with order expansion
s Else, recurse on the node and sum up child results
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Recap

Fast Multi-pole Method is similar:

# Annotate spatial tree with order expansion statistics
(fast bottom-up computation)

# For each guery, process nodes:
s If £ > thresh, approximate with order expansion
s Else, recurse on the node and sum up child results

Added accuracy of order expansion permits more
aggressive pruning while still with bounded error.
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Motivation

o N

Complexity analysis:

# Tree-building is O(N log N): O(N) work at each level,
O(log N) levels (in a balanced tree)

#® Work s O(log N) per query; O(M log N') overall

o |

Dual-tree Algorithms in Statistics — p.6/77



Motivation

-

Consider M € O(N):



Motivation

o N

Consider M € O(N):

# Theorist’s response: “What’s the problem?”; overall
computation is already O(N log N) from tree-building
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# Theorist’s response: “What’s the problem?”; overall
computation is already O(N log N) from tree-building

# Maybe the tree already exists
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Motivation

o N

Consider M € O(N):

# Theorist’s response: “What’s the problem?”; overall
computation is already O(N log N) from tree-building

# Maybe the tree already exists

# Tree-building tends to be very fast
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Motivation
f Gray and Moore, NIPS 2000 T

Dual-tree algorithms (a.k.a. generalized N-body methods):
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Dual-tree algorithms (a.k.a. generalized N-body methods):

#® The most logical extension of single-tree algorithms:
form trees for references and queries
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Motivation
f Gray and Moore, NIPS 2000 T

Dual-tree algorithms (a.k.a. generalized N-body methods):

#® The most logical extension of single-tree algorithms:
form trees for references and queries

o After tree-building, time improved O(N log N) ~» O(N);
much better than traditional O(/N?) for nested loops
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Dual-tree algorithms (a.k.a. generalized N-body methods):

#® The most logical extension of single-tree algorithms:
form trees for references and queries

o After tree-building, time improved O(N log N) ~» O(N);
much better than traditional O(/N?) for nested loops

# Yield exact results or have bounded approximation error
(absolute or relative)
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Motivation
f Gray and Moore, NIPS 2000 T

Dual-tree algorithms (a.k.a. generalized N-body methods):

#® The most logical extension of single-tree algorithms:
form trees for references and queries

o After tree-building, time improved O(N log N) ~» O(N);
much better than traditional O(/N?) for nested loops

# Yield exact results or have bounded approximation error
(absolute or relative)

® Track record: fastest, most accurate methods to date
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Hype
Gray and Moore, NIPS 2000
f Many other papers T

Applications include:
# Nonparametric methods in machine learning:
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Hype
Gray and Moore, NIPS 2000
f Many other papers T

Applications include:

# Nonparametric methods in machine learning:
s The n-point corrleation and range-count
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Hype
Gray and Moore, NIPS 2000
f Many other papers T

Applications include:

# Nonparametric methods in machine learning:
s The n-point corrleation and range-count
» All-k-nearest-neighbors (All-NN)
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Applications include:

# Nonparametric methods in machine learning:
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Hype
Gray and Moore, NIPS 2000
f Many other papers T

Applications include:

# Nonparametric methods in machine learning:
s The n-point corrleation and range-count
» All-k-nearest-neighbors (All-NN)
s Kernel density estimation (KDE)
s Kernel discriminant analysis (KDA)
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Hype
Gray and Moore, NIPS 2000
Many other papers

Applications include:

# Nonparametric methods in machine learning:
The n-point corrleation and range-count
All-k-nearest-neighbors (All-NN)

o

»
»
>
»

Kerne
Kerne
| ocal

density estimation (KDE)
discriminant analysis (KDA)
Inear regression and others
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Hype
Gray and Moore, NIPS 2000
Many other papers

Applications include:

# Nonparametric methods in machine learning:

o

e o @ o ©

The n-point corrleation and range-count
All-k-nearest-neighbors (All-NN)

Kernel density estimation (KDE)

Kernel discriminant analysis (KDA)

Local linear regression and others
More...
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Hype
Gray and Moore, NIPS 2000
f Many other papers T

Applications include:
# Nonparametric methods in machine learning
# Manifold methods via All-NN and others
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Hype
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Applications include:

# Nonparametric methods in machine learning
# Manifold methods via All-NN and others

# Astronomy: quasar identification via KDA
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Hype
Gray and Moore, NIPS 2000
f Many other papers T

Applications include:

# Nonparametric methods in machine learning

# Manifold methods via All-NN and others

# Astronomy: quasar identification via KDA

# Physics: multi-body potentials, fitting wave functions
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Hype
Gray and Moore, NIPS 2000
f Many other papers T

Applications include:

# Nonparametric methods in machine learning
# Manifold methods via All-NN and others

# Astronomy: quasar identification via KDA

# Physics: multi-body potentials, fitting wave functions
o

Biology: protein folding, solvent-accessible surfaces
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Hype
Gray and Moore, NIPS 2000
Many other papers T

Applications include:

9

© o o o @

Nonparametric methods in machine learning

Manifold methods via All-NN and others

Astronomy: quasar identification via KDA

Physics: multi-body potentials, fitting wave functions
Biology: protein folding, solvent-accessible surfaces

(I conjecture) products of sparse matrices and other LA
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Intuition
f Gray and Moore, NIPS 2000 T

General algorithmic sketch:
# Form spatial trees for both queries and references

# For pairs of tree nodes:
s If “bounds” suggest a result for the pair, use it
s Else, recurse on all pairs of child nodes
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Intuition
Gray and Moore, NIPS 2000 T

General algorithmic sketch:
# Form spatial trees for both queries and references

# For pairs of tree nodes:
s If “bounds” suggest a result for the pair, use it
s Else, recurse on all pairs of child nodes

“Bounds” are often based on min/max distances between
nodes; e.g. the range of a kernel applied to the distances.
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f Monochromatic all-nearest-neighbors: map argmin d(q, r) T

qeX reX—q
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f Monochromatic all-nearest-neighbors: map argmin d(q, r) T

qeX reX—q
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f Monochromatic all-nearest-neighbors: map argmin d(q, r) T
qeX reX—q
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Ex: Two-point Correlation
Gray and Moore, NIPS 2000 T

Y ) I(d(w1,22) < h)

r1€X 20X

function tpc(X7, Xo)
if d'(X1, X3) > h, return 0
if du(Xl,XQ) S h, return ’Xl‘ . ‘XQ‘
return tpc( XY, X5) 4 tpe(XY, XT)
+ tpe( X4, X5) + tpe(XE, X5
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EX: Range Count

Gray and Moore, NIPS 2000 T

map Y I(d(q,r) < h)

g€ reR

init Vg € Q*°", a(q) = 0
function rmg(Q, R)
if d'(Q, R) > h, return
if d“(Q, R) < h,
Vg € Q,a(q) += |R|; return
mg(QF, B); mg(QF, RY)
mg(Q", R"); mg(Q", R) o
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Ex: All-nearest-neighbors
Gray and Moore, NIPS 2000

map argmin d(q, )
qe) TreR

init Vg € Q™°", a(q) = oo
function allnn(Q), R)
if a“(Q) < d'(Q, R), return
if (Q, R) = ({g},{7}),
a(q) = min{a(q),d(q,r)}; return
prioritize { R', R2} = {RE, R} by d'(Q~, )
allnn(Q", RY); allnn(Q*, R?)
prioritize {R!, R?} = {R, RR} by d'(QF, )
allnn(Q", R); allnn(Q", R?)




Ex: Kernel Density Estimation

Lee et al., NIPS 2005
f Lee and Gray, UAI 2006 T

map Z Kh(Q7 T)

g€ reR

init Vg € Q™°, a(q) =0; b=0
function kde(Q, R, b)
if K7(Q. R) — K4(Q. R) < (a'(Q) +b) ke,
Vg € Q,a(q) += K} (Q, R); return
prioritize {R', R?} = {R", R®} by d'(Q", ")
kde(Q", R, b+ Kj (Q", R?)); kde(Q", R?,b)
prioritize {R!, R?} = {R", R®} by d'(Q", -)
kde(Q", R', b+ K},(Q", R?)); kde(Q", R*,b)




EX:

Kernel Discriminant Analysis

Gray and Riegel, COMPSTAT 2006
Riegel et al., SIAM Data Mining 2008

P(C
map argmax ©) Z Khe(q,7)
qeQ Ce{C1,C2} ‘RCl r€Rc

-

init Vg € Q™°, a(q) = 6(Q°°, R°°)

enqueue((Qro°t, Rroot)

while dequeue(Q), R) // Main loop of kda
if a'/(Q) > 0 or a“(Q) < 0, return

Vg € Q,alq) —=0(Q, R)

Vg € Q" alq) +=d(Q", R") +4(Q", R")

enqueue(Q”, RY); enqueue(Q”, R™)
enqueue(Q", RY); enqueue(Q", R)
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Case Study: Quasar ldentification

Riegel et al., SIAM Data Mining 2008
f (Sumbitted) Richards et al., AAS 2008 T

Mining for quasars in the Sloan Digital Sky Survey:
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Case Study: Quasar ldentification

Riegel et al., SIAM Data Mining 2008
f (Sumbitted) Richards et al., AAS 2008 T

Mining for quasars in the Sloan Digital Sky Survey:

# Brightest objects in the universe

#® Thus, the farthest/oldest we can see

# Believed to be active galactic nuclei: giant black holes
# Implications for dark matter, dark energy, etc.
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Case Study: Quasar ldentification

-

Riegel et al., SIAM Data Mining 2008
(Sumbitted) Richards et al., AAS 2008 T

Mining for quasars in the Sloan Digital Sky Survey:

N

© o o 0

Brightest objects in the universe

Thus, the farthest/oldest we can see

Believed to be active galactic nuclei: giant black holes
Implications for dark matter, dark energy, etc.

Peplow, Nature 2005 uses one of our catalogs to verify
the cosmic magnification effect predicted by relativity
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Case Study: Quasar ldentification

Riegel et al., SIAM Data Mining 2008
f (Sumbitted) Richards et al., AAS 2008 T

Trained a KDA classifier on 4D spectra data from about 80k
known quasars and 400k non-quasars.

ldentified about 1m quasars from 40m unknown objects.
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known quasars and 400k non-quasars.

ldentified about 1m quasars from 40m unknown objects.

Took 640 seconds in serial; half of that was tree-building.
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Case Study: Quasar ldentification

Riegel et al., SIAM Data Mining 2008
f (Sumbitted) Richards et al., AAS 2008 T

Trained a KDA classifier on 4D spectra data from about 80k
known quasars and 400k non-quasars.

ldentified about 1m quasars from 40m unknown objects.

Took 640 seconds in serial; half of that was tree-building.
Naive’s takes 380 hours, excluding bandwidth learning.

Algorithmic parameters are key to performance:

# Hybrid breadth-depth first expansion

# Epanechnikov kernel (choice of f) to maximize pruning
# Multi-bandwidth algorithm for faster bandwidth fitting
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Case Study: Quasar ldentification

Running Time

10"

LOO CV on 4D Quasar Data

-—0O— - Naive o
— B — Heap ;o
—<— Heap, Epan / |zi/
— A — Hybrid @
—s— Hybrid, Epan | /7

4

Data Set Size

10 10

5

10

-
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GNPs, Formally Speaking

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., NIPS 2008 or JIMLR 2008

Higher-order reduce problem ¥ = ¢ o 1, with

W(X1,..., X)) = @1 @n flx,. .., xp)

r1E€X1 Tn€X,,



GNPs, Formally Speaking

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., NIPS 2008 or JIMLR 2008 T

Higher-order reduce problem ¥ = ¢ o 1, with

W(X1,..., X)) = @1 @n f(x1,...,xn)

r1E€X1 Tn€X,,

subject to decomposability requirement

O X ) =0 X )@ X L)

for all 1 < i < n and partitions X+ U X = X;.
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GNPs, Formally Speaking

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., NIPS 2008 or JIMLR 2008 T

Higher-order reduce problem ¥ = ¢ o 1, with

W(X1,..., X)) = @1 @n f(x1,...,xn)

r1E€X1 Tn€X,,

subject to decomposability requirement

O X ) =0 X )@ X L)

for all 1 < i < n and partitions X+ U X = X;.

We'll also need some means of bounding the results of .
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Decomposability
f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

Decomposability is restrictive; always possible for problems
formed by combinations of map and some one other ®.
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Decomposability
f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

Decomposability is restrictive; always possible for problems
formed by combinations of map and some one other ®.

It is equivalent to

®1... ®nf(g;1,...,xn): ®p1... ®pnf(x1’m’x”)

:Ul EXl aanXn 27p1 EXpl xp’n EXPTL

for all permutations p of the set {1,...,n},
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Decomposability
(Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

Decomposability is restrictive; always possible for problems
formed by combinations of map and some one other ®.

It is equivalent to

®1... ®nf(g;1,...,xn): ®p1... ®pnf(x1’m’x”)

:Ul EXl aanXn 27p1 EXpl xp’n EXPTL

for all permutations p of the set {1,...,n}, and to

(W(XF, XT) @ o(X] X5)) @, (v(XF, XT) & o(XT, XT))

|
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Decomposability

w(va) — @ ®f(a:,y)

reX yeY

( flr, 1) @ f(1,92) @---® f(o1,ym) )
O,

( flwo, 1) @ f(22,92) @---&® f(x2,ym) )
O,
.

(flzn, 1)@ flan,y2) @@ f(en,ym) )



Decomposability

w(Xv Y) — w(Xv YL) X ¢(X» YR)

(flany)\ [ (flany) @@ flenyu) ) )

O, O,
f(z2,y1) ( flz2,y2) @@ f(z2,ym) )

© ® ©

5 5
\f(fCN,yl)) \ (flan,12)® @ flan,yn)) )




Transforming Problems into GNPs
f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

(“Serial” GNPs.) Decomposable or not,

91( ®1 92( ®2---gn( ®n f(wl""’x”))m))

r1E€X1 To€ X9 Tn€X,,

may be transformed into nested GNPs by replacing every
other operator with map and factoring intermediate g; out.

o |
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(“Serial” GNPs.) Decomposable or not,

91( ®1 92( ®2---gn( ®n f(wl""’x”))m))

r1E€X1 To€ X9 Tn€X,,

may be transformed into nested GNPs by replacing every
other operator with map and factoring intermediate g; out.

(“Parallel” GNPs.) Also GNP-able are problems such as:

> wii K (x4, x5)
map
i Zj K(x%xj)
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Transforming Problems into GNPs
f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

(“Serial” GNPs.) Decomposable or not,

91( ®1 92( ®2---gn( ®n f(wl""’x”))m))

r1€X1 ToE X9 Tn€X,,

may be transformed into nested GNPs by replacing every
other operator with map and factoring intermediate g; out.

(“Parallel” GNPs.) Also GNP-able are problems such as:

> wii K (x4, x5)
map
i Zj K(x%xj)

L(“I\/Iulti” GNPs.) Wrap problem with map to vary parameter. J
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The Algorithm

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., ICML 2008 or JMLR 2008 T

“*One algorithm to solve them all”:

(X1, .., Xn)

(« if bounds prove it is safe to prune to a,
— < f(x1,...,xy) Ifeach X; = {x;}, 1.e. Is leaf,
(L XE ) e(.. X7, .)  otherwise

o |
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The Algorithm

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., ICML 2008 or JMLR 2008 T

“*One algorithm to solve them all”:

(X1, .., Xn)

(« if bounds prove it is safe to prune to a,
— < f(x1,...,xy) Ifeach X; = {x;}, 1.e. Is leaf,
(L XE ) e(.. X7, .)  otherwise

Regarding speed, pruning is everything.

o |
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Pruning

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., ICML 2008 or JMLR 2008 T

Roughly, three kinds:

o |
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Pruning

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., ICML 2008 or JMLR 2008 T

Roughly, three kinds:

# Intrinsic pruning depends only on bounds of
(X1, ..., X,) (ex: n-point correlation)
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Pruning

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., ICML 2008 or JMLR 2008 T

Roughly, three kinds:

# Intrinsic pruning depends only on bounds of
(X1, ..., X,) (ex: n-point correlation)

# Extrinsic pruning depends on bounds of (X1, ..., X,)
and past work (ex: all-nearest-neighbors)

o |
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Pruning

Boyer, Riegel, and Gray’s THOR Project
(Planned) Riegel et al., ICML 2008 or JMLR 2008 T

Roughly, three kinds:

9

Intrinsic pruning depends only on bounds of
(X1, ..., X,) (ex: n-point correlation)

Extrinsic pruning depends on bounds of ¥ (X1,..., X,)
and past work (ex: all-nearest-neighbors)

Termination pruning depends only on past work (ex:
kernel discriminant analysis)

|
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Pruning
Boyer, Riegel, and Gray’s THOR Project T

(Planned) Riegel et al., ICML 2008 or JMLR 2008
Roughly, three kinds:

# Intrinsic pruning depends only on bounds of
(X1, ..., X,) (ex: n-point correlation)

# Extrinsic pruning depends on bounds of (X1, ..., X,)
and past work (ex: all-nearest-neighbors)

# Termination pruning depends only on past work (ex:
kernel discriminant analysis)

Approximation is a form of extrinsic pruning.

o |
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Pruning
Boyer, Riegel, and Gray’s THOR Project T

f (Planned) Riegel et al., ICML 2008 or JIMLR 2008
Roughly, three kinds:

# Intrinsic pruning depends only on bounds of
(X1, ..., X,) (ex: n-point correlation)

# Extrinsic pruning depends on bounds of (X1, ..., X,)
and past work (ex: all-nearest-neighbors)

# Termination pruning depends only on past work (ex:
kernel discriminant analysis)

Approximation is a form of extrinsic pruning.

Kind of pruning determined by problem specification.
Ease of pruning influenced by algorithmic parameters.

o |
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An implementation must answer these guestions:



Algorithmic Parameters

o N

An implementation must answer these guestions:

# How to partition data? E.g. what kind of trees to use”?
Non-binary? No tree (ex. Baeza-Yeats)?

o |
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Algorithmic Parameters

o N

An implementation must answer these guestions:

# How to partition data? E.g. what kind of trees to use”?
Non-binary? No tree (ex. Baeza-Yeats)?

# What expansion pattern? Depth-first? Breath-first?
Something else? Which branches first, heuristically?
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Algorithmic Parameters

o N

An implementation must answer these guestions:

# How to partition data? E.g. what kind of trees to use”?
Non-binary? No tree (ex. Baeza-Yeats)?

# What expansion pattern? Depth-first? Breath-first?
Something else? Which branches first, heuristically?

o (Higher-level.) What scale of data structures to use?
Does the problem fit in RAM? Need to be parallel?

o |
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Trees
f Gray and Lee’s Proximity Project, 2005 T

e :

Many options: kd-trees, ball trees, cover trees, sorted lists.

e
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Trees

f Gray and Lee’s Proximity Project, 2005
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Many options: kd-trees, ball trees, cover trees, sorted

-

ISts.

Aside: tree building constitutes graph partitioning and may
L(attempt to) minimize some loss function.

|
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Expansion Pattern

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., ICML 2008 or JMLR 2008 T

Describes the order we replace

V(X ) =X )L X L)

o |
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Expansion Pattern

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., ICML 2008 or JMLR 2008 T

Describes the order we replace

V(X ) =X )L X L)

® DFS has least overhead, sensitive to heuristic
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Expansion Pattern

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., ICML 2008 or JMLR 2008 T

Describes the order we replace

V(X ) =X )L X L)

® DFS has least overhead, sensitive to heuristic
® BFS has more overhead, less senitive to heuristic
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Expansion Pattern

Boyer, Riegel, and Gray’s THOR Project
(Planned) Riegel et al., ICML 2008 or JMLR 2008 T

Describes the order we replace

o o

V(X ) =X )L X L)

DFS has least overhead, sensitive to heuristic
BFS has more overhead, less senitive to heuristic

Priority queue has highest overhead but makes the
most of its heuristic; adds need for operators to have
iInverses (i.e. to form groups)

|
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Expansion Pattern

Boyer, Riegel, and Gray’s THOR Project
f (Planned) Riegel et al., ICML 2008 or JMLR 2008 T

Describes the order we replace

V(X ) =X )L X L)

DFS has least overhead, sensitive to heuristic

°

BFS has more overhead, less senitive to heuristic

°

# Priority queue has highest overhead but makes the
most of its heuristic; adds need for operators to have
iInverses (i.e. to form groups)

Hybrid breadth-depth first pattern: achieves breadth-first
behavior in O(N) space for query-reference problems.

o |
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Problem Scale
f Boyer, Riegel, and Gray's THOR Project T

Simple in-memory data structures, memory-mapped files,
or parallelized/distributed data management.

Some observations:

o |
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Problem Scale
Boyer, Riegel, and Gray's THOR Project T

Simple in-memory data structures, memory-mapped files,
or parallelized/distributed data management.

Some observations:
# All GNPs are parallelizable, some more so than others

|
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Problem Scale
Boyer, Riegel, and Gray's THOR Project T

Simple in-memory data structures, memory-mapped files,
or parallelized/distributed data management.

Some observations:
#® All GNPs are parallelizable, some more so than others
# All GNPs can benefit greatly from multicore processors

|
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Problem Scale
Boyer, Riegel, and Gray's THOR Project T

Simple in-memory data structures, memory-mapped files,
or parallelized/distributed data management.

Some observations:

#® All GNPs are parallelizable, some more so than others
# All GNPs can benefit greatly from multicore processors
# Opportunity to use cache-oblivious trees (VEB, etc.)

|
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THOR Coding Framework

f Boyer, Riegel, and Gray's THOR Project T

Speed-oriented C++ framework for problems of forms

mapg((g)f q,r ) and 9( X X f(l’lal‘z))

q€q reR r1E€X1 x2€ X0
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# Coding entalils filling a few dozen function stubs



THOR Coding Framework

f Boyer, Riegel, and Gray's THOR Project T

Speed-oriented C++ framework for problems of forms

mapg((g)f q,r ) and 9( X X f(l’lafliz))

q€q reR r1E€X1 x2€ X0

# Coding entalils filling a few dozen function stubs
# Easy variation of tree type, expansion pattern, etc.

o |
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THOR Coding Framework

f Boyer, Riegel, and Gray's THOR Project T

Speed-oriented C++ framework for problems of forms

mapg((g)f q,r ) and 9( X X f(l’lafliz))

q€q reR r1E€X1 x2€ X0

# Coding entails filling a few dozen function stubs
# Easy variation of tree type, expansion pattern, etc.
# Automatic parallelization (multicore and distributed)

o |
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f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

Recent clustering method:
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Recent clustering method:
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Case Study: Affinity Propagation

f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

Recent clustering method:
# Frey and Dueck, Science 2007

# Finds exemplars in a data set in attempt to minimize
square reconstruction error

o |
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Case Study: Affinity Propagation

f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

Recent clustering method:
# Frey and Dueck, Science 2007

# Finds exemplars in a data set in attempt to minimize
square reconstruction error

# Number of clusters to find is unspecified, but influenced
by a “preference” parameter

o |
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Case Study: Affinity Propagation

f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

Recent clustering method:
# Frey and Dueck, Science 2007

# Finds exemplars in a data set in attempt to minimize
square reconstruction error

# Number of clusters to find is unspecified, but influenced
by a “preference” parameter

® Presented as fast alternative to zillions of random
restarts of k-centers algorithm

o |
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Case Study: Affinity Propagation

f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

For similarity matrix S (pref along diag), update R and A



Case Study: Affinity Propagation

f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

For similarity matrix S (pref along diag), update R and A

rij < sij — max(aiy + sij)

am+—%5(§:H%OWﬂ)

il £

Damping of R and A helps convergence.
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Case Study: Affinity Propagation

f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

Naively O(N?); can be improved if S is made to be sparse,
but this introduces uncontrolled error.



Case Study: Affinity Propagation

f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

Naively O(N?); can be improved if S is made to be sparse,
but this introduces uncontrolled error.

Alterately, if no damping, we can rearrange into GNPs

v argmaxZ(/{;;(/{jj(sij + a;i51) — pj) — Sij)

J

pi = D rii(sij + aify))
1

o |

Dual-tree Algorithms in Statistics — p.75/77



Case Study: Affinity Propagation

f (Planned) Riegel et al., NIPS 2008 or JMLR 2008 T

Naively O(N?); can be improved if S is made to be sparse,
but this introduces uncontrolled error.

Alterately, if no damping, we can rearrange into GNPs

Qv argmaxZ(/{;;(/{;;(sij + a;i51) — pj) — Sij)

J

pi = D rii(sij + aify))
1

Can pull other tricks to get things to converge.

o |
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Case Study: Affinity Propagation

-

Mean Time per Iteration (sec)

100000 ¢
10000 £
1000 [
100

Affinity Propagation Runtime T

IIII 1 1 IIIIIII 1 1 IIIIII:
Frey-Dueck —e— .-

(extrapolated) ---o-<= 73

7

Dual-Tree —2—

1000 10000

100000 1e+06
Number of Points
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