The n-body problem (2/3)

Prof. Richard Vuduc
Georgia Institute of Technology
CSE/CS 8803 PNA: Parallel Numerical Algorithms
[L.21] Thursday, March 27, 2008

Today's sources

.. CS 267 at UCB (Demmel \& Yelick)
.. Computational Science and Engineering, by Gillbert Strang
\#. Lectures 18-21 of M. Ricotti's Astro 415 course at U. Maryland
H. Jim Stone (Princeton)
! \quad Andrey Kravtsov (U. Chicago)
H. Mike Heath (UIUC)
H. Changa (ChaNGa, U. Washington; based on CHARM++)

Review:
Parallel ODE solvers

Rewrite as 1st-order ODE

$$
\begin{aligned}
\frac{\mathbf{F}_{i}}{m_{i}}=\ddot{\mathbf{r}}_{i} & =-G \sum_{j \neq i} m_{j} \frac{\mathbf{r}_{i}-\mathbf{r}_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{3}} \\
& \Downarrow \\
\frac{d}{d t}\binom{\mathbf{r}_{i}}{\mathbf{v}_{i}} & =\binom{\mathbf{v}_{i}}{\mathbf{F}_{i} / m_{i}}
\end{aligned}
$$

n particles $\Rightarrow 6 n$-element vector

Given:

$$
\begin{aligned}
\frac{\mathbf{F}_{i}}{m_{i}}=\ddot{\mathbf{r}}_{i} & =-G \sum_{j \neq i} m_{j} \frac{\mathbf{r}_{i}-\mathbf{r}_{j}}{\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{2}+\epsilon^{2}\right)^{\frac{3}{2}}} \\
\mathbf{r}_{i}\left(t_{0}\right), \mathbf{v}_{i}\left(t_{0}\right) & =\ldots
\end{aligned}
$$

Solve:

$$
\begin{aligned}
t & \geq t_{0} \\
\frac{d}{d t}\binom{\mathbf{r}_{i}(t)}{\mathbf{v}_{i}(t)} & =\binom{\mathbf{v}_{i}(t)}{\mathbf{F}_{i}(\mathbf{r}) / m_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& n \text { particles } \Rightarrow 6 n \text {-element vector } \\
& \text { Computational tasks: } \\
& \text { 1. Solve ODE } \\
& \text { 2. Inner loop: compute forces }
\end{aligned}
$$

IVP ODE solvers

A. Many algorithms
". Taylor series (e.g., Euler)
:. Runge-Kutta
.. Extrapolation
. Multistep
". Multivalue
H. Design space
:. Single vs. multistep
.. Explicit vs. implicit
:. No. of req'd function/ derivative evaluations

Sources of parallelism

H. Multistage, e.g., Runge-Kutta: Stage evaluation
H. Evaluating right-hand side, e.g., forces in gravitational n-body
H. Solving linear/non-linear systems, e.g., implicit methods
H. Partitioning equations in multiple tasks - waveform relaxation

$$
\frac{d}{d t}\binom{y_{1}^{(k+1)}}{y_{2}^{(k+1)}} \leftarrow\binom{f_{1}\left(t, y_{1}^{(k+1)}, y_{2}^{(k)}\right)}{f_{2}\left(t, y_{1}^{(k)}, y_{2}^{(k+1)}\right)}
$$

Leap-frog integrator

$$
v_{k+\frac{1}{2}} \equiv \dot{r}\left(t+\frac{h}{2}\right) \left\lvert\, \begin{gathered}
r_{k+1} \leftarrow r_{k}+h \cdot v_{k+\frac{1}{2}} \\
v_{k+\frac{3}{2}} \leftarrow v_{k+\frac{1}{2}}+h \cdot g\left(r_{k+1}\right)
\end{gathered}\right.
$$

Time reversibility of leap-frog

Source: http://www.physics.drexel.edu/courses/Comp Phys/Integrators/leapfrog/

Efficiently computing forces: Particle-mesh (PM) approach

Method 1: Direct summation ("Particle-Particle")

H. Most straightforward and accurate
H. \quad Expensive $\Rightarrow \mathrm{O}\left(\mathrm{N}^{2}\right)$
A. Parallelization?

Method 2: Particle-Mesh

E. Idea: Gravitational field has a scalar potential

$$
\nabla \times \mathbf{F}(\mathbf{r}) \equiv 0 \quad \Longrightarrow \quad \mathbf{F}(\mathbf{r})=-\nabla \phi(\mathbf{r})
$$

:. Potential is given by Poisson's equation

$$
\nabla^{2} \phi(\mathbf{r})=\rho(\mathbf{r})
$$

\#. We know how to solve this! Just need a sensible $\rho(\mathrm{r})$

ρ : Create a mesh and assign particles to cells:

E. Nearest grid point
.. Coarse ρ
H. Charge-in-cell or particle-in-cell (PIC)
". Assign "shape" or "cloud" to each particle
-. Smooths ρ
:. Boundary conditions?
:. Periodic or multipole
". Last step: $\rho \rightarrow \Phi \rightarrow \boldsymbol{F}$
H. Finite differencing + interpolation

Particle-in-cell:

Replace points by distribution function

PM: Pros \& cons

E. Pro: Poisson is warm and fuzzy!
:. Many accurate and efficient solvers (e.g., multigrid, FFT)
.. Con: Limitations of meshes
\#. How to choose no. of grid points?
:. Cannot resolve interactions on scales smaller than grid size
". Hybrid PP-PM ("P³M") methods possible

Efficiently computing forces: Tree codes

Approximating long-distance interactions

$$
\begin{aligned}
& \frac{D}{R}<\theta \\
\times= & \text { center of mass }
\end{aligned}
$$

Repeat recursively

Idea: Organize particles in space in a tree

A Complete Quadtree with 4 Levels

Adaptive quad-tree

Adaptive quadtree where no square contains more than 1 particle

Source: M. Warren \& J. Salmon, In Supercomputing 1993.

Barnes-Hut algorithm (1986)

H. Algorithm:
!. Build tree
". For each node, compute center-of-mass and total mass
H. For each particle, traverse tree to compute force on it

$\frac{D}{R}<\theta$

Other trees are possible, e.g., kd-tree

Fast multipole method of Greengard \& Rokhlin (1987)

A. Differences from Barnes-Hut
H. Computes potential, not force
\#. Uses more than center-of- and total-mass \Rightarrow more accurate \& expensive
\#. Accesses fixed set of boxes at every level, independent of "D / R"
E. Increasing accuracy
F. BH: Fixed info / box, more boxes
H. FMM: Fixed no. of boxes; more info / box

FMM computes compact expression for potential

$$
\begin{aligned}
|\mathbf{F}(\mathbf{r})| & =\frac{1}{r^{2}} \\
& \Downarrow \\
\mathbf{F}(\mathbf{r}) & =-\nabla \phi(\mathbf{r})
\end{aligned}
$$

Potential in 3-D

3-D:

$$
\begin{aligned}
\phi(\mathbf{r}) & =-\frac{1}{|\mathbf{r}|}=-\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
\mathbf{F}(\mathbf{r}) & =-\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)=-\left(\frac{x}{r^{3}}, \frac{y}{r^{3}}, \frac{z}{r^{3}}\right)
\end{aligned}
$$

Potential in 2-D

2-D: $\quad \phi(\mathbf{r})=\ln |\mathbf{r}|=\ln \sqrt{x^{2}+y^{2}}$

$$
\mathbf{F}(\mathbf{r})=-\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}\right)=-\left(\frac{x}{r^{2}}, \frac{y}{r^{2}}\right)
$$

For n points in the plane:

$$
\phi(x, y)=\sum_{k=1}^{n} m_{k} \ln \sqrt{\left(x-x_{k}\right)^{2}+\left(y-y_{k}\right)^{2}}
$$

"Complex" representation

2-D: $\phi(x, y)=\sum_{k=1}^{n} m_{k} \ln \sqrt{\left(x-x_{k}\right)^{2}+\left(y-y_{k}\right)^{2}}$
Complex plane:

$$
\begin{aligned}
z & \equiv x+i y \\
\phi(z) & =\sum_{k=1}^{n} m_{k} \ln \left|z-z_{k}\right| \\
& =\operatorname{Re}\left\{\sum_{k=1}^{n} m_{k} \ln \left(z-z_{k}\right)\right\}
\end{aligned}
$$

2-D multipole expansion

$$
\begin{aligned}
\sum_{k=1}^{n} m_{k} \ln \left(z-z_{k}\right) & =M \ln z+\sum_{k} m_{k} \ln \left(1-\frac{z_{k}}{z}\right) \\
& =M \ln z+\sum_{k} m_{k} \sum_{d=1}^{\infty} \frac{1}{d}\left(\frac{z_{k}}{z}\right)^{d} \\
& =M \ln z+\sum_{d=1}^{\infty} \underbrace{\left(\sum_{k=1}^{n} m_{k} z_{k}^{d}\right)}_{\equiv \alpha_{d}} \frac{1}{z^{d}} \\
& =M \ln z+\sum_{d=1}^{\infty} \frac{\alpha_{d}}{z^{d}} \quad \begin{array}{l}
\text { Can approx. } \\
\text { by truncation }
\end{array}
\end{aligned}
$$

2-D multipole expansion

$$
\begin{aligned}
\alpha_{d} & \equiv \sum_{k=1}^{n} m_{k} z_{k}^{d} \\
\sum_{k=1}^{n} m_{k} \ln \left(z-z_{k}\right) & =M \ln z+\sum_{d=1}^{\infty} \frac{\alpha_{d}}{z^{d}} \\
& \approx M \ln z+\sum_{d=1}^{p} \frac{\alpha_{d}}{z^{d}}+\operatorname{Error}(p) \\
\operatorname{Error}(p) & \sim\left(\frac{\max \left|z_{k}\right|}{|z|}\right)^{p+1}
\end{aligned}
$$

$$
\operatorname{Error}(p) \sim\left(\frac{\max \left|z_{k}\right|}{|z|}\right)^{p+1}
$$

Error outside larger box is O(c^{p+1})

Outer expansion

$$
\begin{aligned}
\alpha_{d} & \equiv \sum_{k=1}^{n} m_{k} z_{k}^{d} \\
\sum_{k=1}^{n} m_{k} \ln \left(z-z_{k}\right) & \approx M \ln z+\sum_{d=1}^{p} \frac{\alpha_{d}}{z^{d}}
\end{aligned}
$$

H. $\operatorname{Outer}(\mathbf{N})=\left\{\mathrm{M}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{\rho}, \mathrm{ZN}\right\}$
.. Use to evaluate $\phi(z)$ outside node N due to those inside N
H. Centered at ZN_{N}
H. Evaluation costs is $O(p)$
A. Cost linear with no. of bits of precision

$$
\sum_{k=1}^{n} m_{k} \ln \left(z-z_{k}\right) \approx M \ln z+\sum_{d=1}^{p} \frac{\alpha_{d}}{z^{d}}
$$

Using Cuter_Shift to convert Cuter(n) to Chuterin2)

$$
\begin{aligned}
& \phi_{1}(z)=M_{1} \ln \left(z-z_{1}\right)+\sum_{d=1}^{p} \frac{\alpha_{d}^{(1)}}{\left(z-z_{1}\right)^{d}} \\
& \phi_{2}(z)=M_{2} \ln \left(z-z_{2}\right)+\sum_{d=1}^{p} \frac{\alpha_{d}^{(2)}}{\left(z-z_{2}\right)^{d}}
\end{aligned}
$$

For z outside dashed black box:

$$
\begin{aligned}
\phi_{1}(z) & \sim \phi_{2}(z) \\
\left(\begin{array}{c}
\alpha_{1}^{(2)} \\
\vdots \\
\alpha_{d}^{(2)}
\end{array}\right) & \approx A\left(z_{1}\right) \cdot\left(\begin{array}{c}
\alpha_{1}^{(1)} \\
\vdots \\
\alpha_{d}^{(1)}
\end{array}\right)
\end{aligned}
$$

" \quad Outer(N2) = Outer_shift(Outer(N1), \mathbf{z}_{2})

Inner expansion

H. $\operatorname{Outer}(\mathbf{N})=\left\{\mathrm{M}, \alpha_{1}, \boldsymbol{\alpha}_{2}, \ldots, \alpha_{\mathrm{p}}, \mathrm{ZN}\right\}$

$$
\sum_{k=1}^{n} m_{k} \ln \left(z-z_{k}\right) \approx M \ln z+\sum_{d=1}^{p} \frac{\alpha_{d}}{z^{d}}
$$

H. Similarly, Inner(N) evaluates potential inside N from particles outside.

$$
\sum_{d=1}^{p} \beta_{d}\left(z-z_{N}\right)^{d}
$$

Inner expansion

$\operatorname{Inner}(\mathbf{N} 1)=$ Inner_shift(Inner(N2), \mathbf{z}_{1})

Using Outer Shift to convert Outer(nl) to Outerin2

Need Inner(N4) =

Convert(Outer(N3))

Converting Outer(n3) to Inner(n4)

FMM algorithm

A. Build tree
H. Bottom-up traversal to compute Outer(N)
A. Top-down traversal to compute Inner(N)
H. For each leaf N , add contributions of nearest particles directly into Inner(N)

FMM algorithm

H. Build tree

H. Bottom-up traversal to compute Outer(N)
A. Top-down traversal to compute Inner(N)
H. For each leaf N , add contributions of nearest particles directly into Inner(N)

FMM algorithm

A. Build tree
H. Bottom-up traversal to compute Outer(N)
H. Top-down traversal to compute Inner(N)
H. For each leaf N , add contributions of nearest particles directly into Inner(N)

Building Outer(N)

Inner Loop of Build_Outer

e(4)	e(3)
Outer(e(4))	Outer(e(3))
Outer-Shift	Outer-Shift
Outer (n)	
Outer-Shift Outer(e(1))	Outer-Shift
e(1)	e(2)

FMM algorithm

A. Build tree
H. Bottom-up traversal to compute Outer(N)
H. Top-down traversal to compute $\operatorname{Inner}(\mathbf{N})$
H. For each leaf N , add contributions of nearest particles directly into Inner(N)

Building Inner(\mathbf{N})

Interaction_Set(n) for the Fast Multipole Method

i	i	i	i	i	i
i	i	i	i	i	i
i				i	i
i		n		i	i
i				i	i
i	i	i	i	i	i

FMM algorithm

A. Build tree
H. Bottom-up traversal to compute Outer(N)
H. Top-down traversal to compute Inner(N)
H. For each leaf \mathbf{N}, add contributions of nearest particles directly into Inner(N)

Administrivia

Upcoming schedule changes

:. Some adjustment of topics (TBD)
H. Tu 4/1 - Esteemed colleague
R. R. Riegel on "Dual tree algorithms in statistics"
H. Th 4/3 - Attend talk by Dr. Douglass Post from DoD HPC Modernization Program, 9:30-10:30am, room MiRC 102A\&B
H. No HW 2 (optional assignment possible)
H. Project checkpoint (3 page max): Tu 4/8
"In conclusion..."

Ideas apply broadly

.. Physical sciences, e.g.,
. Plasmas
:. Molecular dynamics
\#. Electron-beam lithography device simulation
.. Fluid dynamics
". "Generalized" n-body problems: Talk to your classmate, Ryan Riegel

Backup slides

2-D multipole expansion

$$
\begin{aligned}
\phi(z) & =\operatorname{Re}\left\{\sum_{k=1}^{n} m_{k} \ln \left(z-z_{k}\right)\right\} \\
& \Downarrow \\
\sum_{k=1}^{n} m_{k} \ln \left(z-z_{k}\right)= & M \ln z+\sum_{k} m_{k} \ln \left(1-\frac{z_{k}}{z}\right) \\
= & M \ln z+\sum_{d=1}^{\infty} \frac{\alpha_{d}}{z^{d}} \\
& \text { Approx. by truncating sum }
\end{aligned}
$$

