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Today’s sources

CS 267 at UCB (Demmel & Yelick)

Papers from various autotuning projects

PHiPAC, ATLAS, FFTW, SPIRAL, TCE

See: Proc. IEEE 2005 special issue on Program Generation, Optimization, and Platform 
Adaptation

Me (for once!)
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Review:
Cache-oblivious algorithms
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A recursive algorithm for matrix-multiply

A11 A12

A21 A22

C11 C12

C21 C22

B11 B12

B21 B22
Divide all dimensions in half

Bilardi, et al.: Use grey-code ordering

No. of misses, with tall-cache assumption:

Q(n) =

{
8 · Q(n

2 ) if n >
√

M
3

3n2 otherwise

}
≤ Θ

(
n3

L
√

M

)
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Performance-engineering 
challenges

Mini-Kernel

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA

Iterative

ATLAS CGw/S
ATLAS Unleashed
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t=0
x=0 16

5
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Cache-oblivious stencil computation
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Theorem [Frigo & Strumpen (ICS 2005)]:
d = dimension ⇒

Q(n, t; d) = O

(
nd · t

M
1
d

)
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Cache-conscious algorithm

Source: Datta, et al. (2007)
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Survey of autotuning
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Early idea seedlings

Polyalgorithms: John R. Rice

(1969) “A polyalgorithm for the automatic solution of nonlinear equations”

(1976) “The algorithm selection problem”

Profiling and feedback-directed compilation

(1971) D. Knuth: “An empirical study of FORTRAN programs”

(1982) S. Graham, P. Kessler, M. McKusick: gprof

(1991) P. Chang, S. Mahlke, W-m. W. Hwu: “Using profile information to assist classic code optimizations”

Code generation from high-level representations

(1989) J. Johnson, R.W. Johnson, D. Rodriguez, R. Tolimieri: “A methodology for designing, modifying, and 
implementing Fourier Transform algorithms on various architectures.”

(1992) M. Covell, C. Myers, A. Oppenheim: “Computer-aided algorithm design and arrangement” (1992)
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Why doesn’t the compiler do the 
dirty work?

Why doesn’t the compiler do all of this?

Analysis

Over-specified dependencies

Correctness requirements

Limited access to relevant run-time information

Architecture: Realistic hardware models?

Engineering: Hard to modify a production compiler
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Source: Voss, ADAPT compiler project: http://www.eecg.toronto.edu/~voss/AdaptPage/results.html
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Source: Voss, ADAPT compiler project: http://www.eecg.toronto.edu/~voss/AdaptPage/results.html
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Source: Voss, ADAPT compiler project: http://www.eecg.toronto.edu/~voss/AdaptPage/results.html
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Automatic performance tuning, or
“autotuning”

Two-phase methodology for producing automatically tuned code

Given: Computational kernel or program; inputs; machine

Identify and generate a parameterized space of candidate implementations

Select the fastest one using empirical modeling and automated experiments

“Autotuner” = System that implements this

Usually domain-specific (exception: “autotuning/iterative compilers”)

Leverage back-end compiler for performance and portability
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How an autotuner differs from a 
compiler (roughly)

Compiler Autotuner

Input

Code generation 
time

Implementation 
selection

General-purpose 
source code

Specification

User responsive Long, but amortized

Static analysis; 
some run-time 

profiling/feedback

Automated empirical 
models and 
experiments
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m0

n0

k0 = 1 Mflop/s

Example: What a search space looks like

Source: PHiPAC Project at UC Berkeley (1997)

Platform: Sun Ultra IIi

16 double regs

667 Mflop/s peak

Unrolled, pipelined 
inner-kernel

Sun cc v5.0 compiler
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Dense linear algebra
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PHiPAC (1997)

Portable High-Performance ANSI C [Bilmes, Asanovic, Chin, Demmel (1997)]

Coding guidelines: C as high-level assembly language

Code generator for multi-level cache- and register-blocked matrix multiply

Exhaustive search over all parameters

Began as class project which beat the vendor BLAS
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PHiPAC coding guideline example:
Removing false dependencies

Use local variables to remove false dependencies

a[i] = b[i] + c;
a[i+1] = b[i+1] * d;

float f1 = b[i];
float f2 = b[i+1];

a[i] = f1 + c;
a[i+1] = f2 * d;

False read-after-write hazard
between a[i] and b[i+1]

In C99, may declare a & b unaliased
(“restrict” keyword)
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ATLAS (1998)

“Automatically Tuned Linear Algebra Software” — [R.C. Whaley and J. 
Dongarra (1998)]

Overcame PHiPAC shortcomings on x86 platforms

Copy optimization, prefetch, alternative schedulings

Extended to full BLAS, some LAPACK support (e.g., LU)

Code generator (written in C, output C w/ inline-assembly) with search

Copy optimization prunes much of PHiPAC’s search space

“Simple” line searches

See: iterative floating-point kernel optimizer (iFKO) work
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Search vs. modeling

Yotov, et al. “Is search really 
necessary to generate high-
performance BLAS?”

“Think globally, search locally”

Small gaps ⇒ local search

Large gaps ⇒ refine model

“Unleashed” ⇒ hand-optimized 

plug-in kernels
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Signal processing
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Source: J. Johnson (2007), CScADS autotuning workshop

pseudo
Mflop/s

Motivation for performance tuning
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FFTW (1997)

“Fastest Fourier Transform in the West” [M. Frigo, S. Johnson (1997)]

“Codelet” generator (in OCaml)

Explicit represent a small fixed-size transform by its computation DAG

Optimize DAG: Algebraic transformations, constant folding, “DAG transposition”

Schedule DAG cache-obliviously and output as C source code

Planner: At run-time, determine which codelets to apply

Executor: Perform FFT of a particular size using plan

Efficient “plug-in” assembly kernels
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Cooley-Tukey FFT algorithm

y[k] ← DFTN (x, k) ≡
N−1∑

j=0

x[j] · ω−kj
N x, y ∈ CN

ωN ≡ e2π
√
−1/N

N ≡ N1 · N2

⇓
0 ≤ k1 < N1 and 0 ≤ k2 < N2

y[k1 + k2 · N1] ←
N2−1∑

n2=0

[(
N1−1∑

n1

x[n1 · N2 + n2] · ω−k1n1
N1

)
· ω−k1n2

N

]
· ω−k2n2

N2
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Cooley-Tukey FFT algorithm

N2-point DFT

N1-point DFT Twiddle

y[k] ← DFTN (x, k) ≡
N−1∑

j=0

x[j] · ω−kj
N x, y ∈ CN

ωN ≡ e2π
√
−1/N

N ≡ N1 · N2

⇓
0 ≤ k1 < N1 and 0 ≤ k2 < N2

y[k1 + k2 · N1] ←
N2−1∑

n2=0

[(
N1−1∑

n1

x[n1 · N2 + n2] · ω−k1n1
N1

)
·ω−k1n2

N

]
·ω−k2n2

N2
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Cooley-Tukey FFT algorithm: Encoding in the codelet generator

N2-point DFT

N1-point DFT Twiddle

y[k] ← DFTN (x, k) ≡
N−1∑

j=0

x[j] · ω−kj
N x, y ∈ CN

y[k1 + k2 · N1] ←
N2−1∑

n2=0

[(
N1−1∑

n1

x[n1 · N2 + n2] · ω−k1n1
N1

)
·ω−k1n2

N

]
·ω−k2n2

N2

(Functional
pseudo-code)

let dftgen(N,x) ≡ fun k → . . . # DFTN (x, k)
let cooley tukey(N1, N2, x) ≡

let x̂ ≡ fun n2, n1 → x(n2 + n1 · N2) in
let G1 ≡ fun n2 → dftgen(N1, x̂(n2, )) in
let W ≡ fun k1, n2 → G1(n2, k1) · ω−k1n2

N in
let G2 ≡ fun k1 → dftgen(N2,W(k1, ))
in

fun k → G2(k mod N1, k div N1)
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Planner phase

Assembles plan
using dynamic
programming
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G5

P4
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SPIRAL (1998)

Code generator

Represent linear transformations as formulas

Symbolic algebra + rewrite engine transforms formulas

Search using variety of techniques (more later)
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Source: J. Johnson (2007), CScADS autotuning workshop
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Source: J. Johnson (2007), CScADS autotuning workshop
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High-level representations and rewrite rules

DFTN ≡
[
ωkl

N

]
0≤k,l<N

DCT-2N ≡
[
cos

(2l + 1)kπ

2N

]

0≤k,l<N

...

n = k · m :
=⇒ DFTn → (DFTk ⊗ Im)Tn

m(Ik ⊗DFTm)Ln
k

n = k · m, gcd(k, m) = 1 :
=⇒ DFTn → Pn(DFTk ⊗DFTm)Qn

p is prime :
=⇒ DFTp → RT

p (I1 ⊕DFTp−1Dp(I1 ⊕DFTp−1)Rp

...

DFT2 →
[

1 1
1 −1

]
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High-level representations expose parallelism

(I4 ⊗A) ·





X1

X2

X3

X4



 =





A
A

A
A



 ·





X1

X2

X3

X4





=





AX1

AX2

AX3

AX4





A applied 4 times independently
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High-level representations expose parallelism

SIMD-vectorizable

([
a b
c d

]
⊗ I2

)
·





x1

x2

x3

x4



 =
[

a · I2 b · I2

c · I2 d · I2

]
·





x1

x2

x3

x4





=





a

[
x1

x2

]
+ b

[
x3

x4

]

c

[
x1

x2

]
+ d

[
x3

x4

]
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Search in SPIRAL

Search over ruletrees, i.e., possible formula expansions

Empirical search

Exhaustive

Random

Dynamic programming

Evolutionary search

Hill climbing

Machine learning methods
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Example: SMP + vectorization results

Source: F. Franchetti (2007), CScADS autotuning workshop

41



Administrivia
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Upcoming schedule changes

Some adjustment of topics (TBD)

Tu 3/11 — Project proposals due

Th 3/13 — SIAM Parallel Processing (attendance encouraged)

Tu 4/1 — No class

Th 4/3 — Attend talk by Doug Post from DoD HPC Modernization Program
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Homework 1:
Parallel conjugate gradients

Put name on write-up!

Grading: 100 pts max

Correct implementation — 50 pts

Evaluation — 30 pts

Tested on two samples matrices — 5

Implemented and tested on stencil — 10

“Explained” performance (e.g., per proc, load balance, comp. vs. comm) — 15

Performance model — 15 pts

Write-up “quality” — 5 pts
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Projects

Proposals due Tu 3/11

Your goal should be to do something useful, interesting, and/or publishable!

Something you’re already working on, suitably adapted for this course

Faculty-sponsored/mentored

Collaborations encouraged
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My criteria for “approving” your 
project

“Relevant to this course:” Many themes, so think (and “do”) broadly

Parallelism and architectures

Numerical algorithms

Programming models

Performance modeling/analysis
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General styles of projects

Theoretical: Prove something hard (high risk)

Experimental:

Parallelize something

Take existing parallel program, and improve it using models & experiments

Evaluate algorithm, architecture, or programming model
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Anything of interest to a faculty member/project outside CoC

Parallel sparse triple product (R*A*RT, used in multigrid)

Future FFT

Out-of-core or I/O-intensive data analysis and algorithms

Block iterative solvers (convergence & performance trade-offs)

Sparse LU

Data structures and algorithms (trees, graphs)

Look at mixed-precision

Discrete-event approaches to continuous systems simulation

Automated performance analysis and modeling, tuning

“Unconventional,” but related

Distributed deadlock detection for MPI

UPC language extensions (dynamic block sizes)

Exact linear algebra

Examples
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Sparse linear algebra
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Key distinctions in autotuning work 
for sparse kernels

Data structure transformations

Recall HW1

Sparse data structures require meta-data overhead

Sparse matrix-vector multiply (SpMV) is memory bound

Bandwidth limited ⇒ minimize data structure size

Run-time tuning: Need lightweight techniques

Extra flops pay off
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Sparsity (1998) and OSKI (2005)

Berkeley projects (BeBOP group: Demmel & Yelick; Im, Vuduc, et al.)

PHiPAC ⇒ SPARSITY ⇒ OSKI

On-going: See multicore optimizations by Williams, et al., in SC 2007

Motivation: Sparse matrix-vector multiply (SpMV) ≤ 10% peak or less

Indirect, irregular memory access

Low q vs. dense case

Depends on machine and matrix, possibly unknown until run-time
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50% extra zeros

1.5x faster
(2/3 time) on
Pentium III
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Library Install-Time (offline) Application Run-Time

How OSKI tunes
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Library Install-Time (offline) Application Run-Time

Benchmark
data

1. Build for
Target
Arch.

2. Benchmark

Generated
code

variants

How OSKI tunes
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Library Install-Time (offline) Application Run-Time

Benchmark
data

1. Build for
Target
Arch.

2. Benchmark

Generated
code

variants

Heuristic
models

1. Evaluate
Models

Workload
from program

monitoring History
Matrix

2. Select
Data Struct.

& Code

To user:
Matrix handle
for kernel
calls

How OSKI tunes
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Heuristic model example:
Selecting a block size

Idea: Hybrid off-line/run-time model

Offline benchmark: Measure Mflops(r, c) on dense matrix in sparse format

Run-time: Sample matrix to quickly estimate Fill(r, c)

Run-time model: Choose r, c to maximize Mflops(r,c) / Fill(r, c)

Accurate in practice (selects r x c with performance within 10% of best)

Run-time cost?

Roughly 40 SpMVs

Dominated by conversion (~80%)
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Workload tuning

Consider BiCG solver: Equal mix of A*x and AT*y (independent)

3×1: A·x, AT·y = 1053, 343 Mflop/s  ⇒ 517 Mflop/s

3×3: A·x, AT·y = 806, 826 Mflop/s  ⇒ 816 Mflop/s

Higher-level operation: Fused (A*x, AT*y) kernel

3×1: 757 Mflop/s

3×3: 1400 Mflop/s
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Tensor Contraction Engine (TCE) 
for quantum chemistry
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Tensor Contraction Engine (TCE)

Application domain: Quantum chemistry

Electronic structure calculations

Dominant computation expressible as a “tensor contraction”

TCE generates a complete parallel program from a high-level spec

Automates time-space trade-offs

Output

S. Hirata (2002), and many others

Following presentation taken from Proc. IEEE 2005 special issue
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Source: Baumgartner, et al. (2005)

Motivation: Simplify program development
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Sabij =
∑

c,d,e,f,k,l

Aacik ×Bbefl × Cdfjk ×Dcdel

⇓

Sabij =
∑

c,k




∑

d,f




∑

e,l

Bbefl ×Dcdel



× Cdfjk



×Aacik

Naïvely, ≈ 4 × N10 flops

Assuming associativity and distributivity, ≈ 6 × N6 flops,
but also requires temporary storage.

Source: Baumgartner, et al. (2005)

Rewriting to reduce operation counts
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T (1)
bcdf =

∑

e,l

Bbefl ×Dcdel

T (2)
bcjk =

∑

d,f

T (1)
bcdf × Cdfjk

Sabij =
∑

c,k

T (2)
bcjk ×Aacik

T1 = T2 = S = 0
for b, c, d, e, f, l do

T1[b, c, d, f ] += B[b, e, f, l] · D[c, d, e, l]
for b, c, d, f, j, k do

T2[b, c, j, k] += T1[b, c, d, f ] · C[d, f, j, k]
for a, b, c, i, j, k do

S[a, b, i, j] += T2[b, c, j, k] · A[a, c, i, k]

Operation and storage minimization via loop fusion
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T (1)
bcdf =

∑

e,l

Bbefl ×Dcdel

T (2)
bcjk =

∑

d,f

T (1)
bcdf × Cdfjk

Sabij =
∑

c,k

T (2)
bcjk ×Aacik

T1 = T2 = S = 0
for b, c, d, e, f, l do

T1[b, c, d, f ] += B[b, e, f, l] · D[c, d, e, l]
for b, c, d, f, j, k do

T2[b, c, j, k] += T1[b, c, d, f ] · C[d, f, j, k]
for a, b, c, i, j, k do

S[a, b, i, j] += T2[b, c, j, k] · A[a, c, i, k]

Operation and storage minimization via loop fusion

S = 0
for b, c do

T1f ← 0, T2f ← 0
for d, f do

for e, l do
T1f += B[b, e, f, l] · D[c, d, e, l]

for j, k do
T2f [j, k] += T1f · C[d, f, j, k]

for a, i, j, k do
S[a, b, i, j] += T2f [j, k] · A[a, c, i, k]
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Time-space trade-offs

for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for c, e, b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

Integrals, O(1000) flops

“Contraction” of T over i, j

“Contraction” over T(1) and T(2)

Max index of
   a—f: O(1000)
   i—k: O(100)
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Time-space trade-offs

for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for c, e, b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

Same indices
⇒ Loop fusion candidates

Max index of
   a—f: O(1000)
   i—k: O(100)
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Time-space trade-offs

for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for c, e, b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for a, c, e, f , b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, e, c, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

Add
extra
flops
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Time-space trade-offs

for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for c, e, b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

⇐ Fusedfor a, e, c, f do
for i, j do

x += Tijae · Tijcf

for b, k do

T (1)
cebk ← f1(c, e, b, k)

T (2)
afbk ← f2(a, f, b, k)

y += T (1)
cebk · T (2)

afbk

E += x · y
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for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for c, e, b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

Tiled & partially fused for aB , eB , cB , fB do
for a, e, c, f do

for i, j do
X̂aecf += Tijae · Tijcf

for b, k do
for c, e do

T̂ (1)
ce ← f1(c, e, b, k)

for a, f do

T̂ (2)
af ← f2(a, f, b, k)

for c, e, a, f do

Ŷceaf += T̂ (1)
ce · T̂ (2)

af

for c, e, a, f do
E += X̂aecf · Ŷceaf

73



74



75



Next time:
Empirical compilers and tools
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“In conclusion…”
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Backup slides
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