Autotuning (2/2): Specialized code generators

Prof. Richard Vuduc
Georgia Institute of Technology
CSE/CS 8803 PNA: Parallel Numerical Algorithms
[L.18] Thursday, March 6, 2008

Today's sources

.. CS 267 at UCB (Demmel \& Yelick)
:. Papers from various autotuning projects
!. PHiPAC, ATLAS, FFTW, SPIRAL, TCE
H. See: Proc. IEEE 2005 special issue on Program Generation, Optimization, and Platform Adaptation
\#. Me (for once!)

Review:
Cache-oblivious algorithms

A recursive algorithm for matrix-multiply

:. Divide all dimensions in half
A. Bilardi, et al.: Use grey-code ordering

B_{11}	B_{12}
B_{21}	B_{22}
C_{11}	C_{12}
C_{21}	C_{22}

No. of misses, with tall-cache assumption:
$Q(n)=\left\{\begin{array}{ll}8 \cdot Q\left(\frac{n}{2}\right) & \text { if } n>\sqrt{\frac{M}{3}} \\ 3 n^{2} & \text { otherwise }\end{array}\right\} \leq \Theta\left(\frac{n^{3}}{L \sqrt{M}}\right)$

Performance-engineering challenges

Ultrasparc Illi

Cache-oblivious stencil computation

Theorem [Frigo \& Strumpen (ICS 2005)]:

d = dimension \Rightarrow

$$
Q(n, t ; d)=O\left(\frac{n^{d} \cdot t}{M^{\frac{1}{d}}}\right)
$$

Cache-conscious algorithm

Source: Datta, et al. (2007)

Survey of autotuning

Early idea seedlings

:. Polyalgorithms: John R. Rice
". (1969) "A polyalgorithm for the automatic solution of nonlinear equations"
H. (1976) "The algorithm selection problem"
E. Profiling and feedback-directed compilation
". (1971) D. Knuth: "An empirical study of FORTRAN programs"
\#. (1982) S. Graham, P. Kessler, M. McKusick: gprof
H. (1991) P. Chang, S. Mahlke, W-m. W. Hwu: "Using profile information to assist classic code optimizations"
I. Code generation from high-level representations
". (1989) J. Johnson, R.W. Johnson, D. Rodriguez, R. Tolimieri: "A methodology for designing, modifying, and implementing Fourier Transform algorithms on various architectures."
H. (1992) M. Covell, C. Myers, A. Oppenheim: "Computer-aided algorithm design and arrangement" (1992)

Why doesn't the compiler do the dirty work?

I. Why doesn't the compiler do all of this?
:. Analysis
:. Over-specified dependencies
-. Correctness requirements
\#. Limited access to relevant run-time information
". Architecture: Realistic hardware models?
H. Engineering: Hard to modify a production compiler

Flag Selection

Specialization

Parallel On/Off

Automatic performance tuning, or "autotuning"

H. Two-phase methodology for producing automatically tuned code
\#. Given: Computational kernel or program; inputs; machine
H. Identify and generate a parameterized space of candidate implementations
I. Select the fastest one using empirical modeling and automated experiments
H. "Autotuner" = System that implements this
\#. Usually domain-specific (exception: "autotuning/iterative compilers")
F. Leverage back-end compiler for performance and portability

How an autotuner differs from a compiler (roughly)

	Compiler	Autotuner
Input	General-purpose source code	Specification
Code generation time	User responsive	Long, but amortized
Implementation selection	Static analysis; some run-time profiling/feedback	Automated empirical models and experiments

Example: What a search space looks like

:. Platform: Sun Ultra Ili
". 16 double regs
.. 667 Mflop/s peak
:. Unrolled, pipelined inner-kernel
:. Sun cc v5.0 compiler

PROCEEDINGSMIEEE vetuwe me mumen?

Special Issue on:
PROGRAM GENERATION, OPTIMIZATION, AND PLATFORM ADAPTATION

 1012151

Proceedings of the IEEE special issue, Feb. 2005

Dense linear algebra

PHiPAC (1997)

H. Portable High-Performance ANSI C [Bilmes, Asanovic, Chin, Demmel (1997)]
\#. Coding guidelines: C as high-level assembly language
:. Code generator for multi-level cache- and register-blocked matrix multiply
". Exhaustive search over all parameters
:. Began as class project which beat the vendor BLAS

PHiPAC coding guideline example: Removing false dependencies

\#. Use local variables to remove false dependencies

```
a[i] = b[i] + c;
a[i+1] = b[i+1] * d;
    \downarrow
float f1 = b[i];
float f2 = b[i+1];
a[i] = f1 + c;
a[i+1] = f2 * d;
```

False read-after-write hazard between $a[i]$ and $b[i+1]$

In C99, may declare a \& b unaliased ("restrict" keyword)

ATLAS (1998)

I. "Automatically Tuned Linear Algebra Software" - [R.C. Whaley and J. Dongarra (1998)]
:. Overcame PHiPAC shortcomings on x86 platforms
H. Copy optimization, prefetch, alternative schedulings
". Extended to full BLAS, some LAPACK support (e.g., LU)
A. Code generator (written in C, output C w/ inline-assembly) with search
H. Copy optimization prunes much of PHiPAC's search space
.. "Simple" line searches
H. See: iterative floating-point kernel optimizer (iFKO) work

Search vs. modeling

H. Yotov, et al. "Is search really necessary to generate highperformance BLAS?"
". "Think globally, search locally"
". Small gaps \Rightarrow local search
F. Large gaps \Rightarrow refine model
H. "Unleashed" \Rightarrow hand-optimized plug-in kernels

Signal processing

Motivation for performance tuning

Source: J. Johnson (2007), CScADS autotuning workshop

FFTW (1997)

H. "Fastest Fourier Transform in the West" [M. Frigo, S. Johnson (1997)]
A. "Codelet" generator (in OCaml)
H. Explicit represent a small fixed-size transform by its computation DAG
:. Optimize DAG: Algebraic transformations, constant folding, "DAG transposition"
I. Schedule DAG cache-obliviously and output as C source code
H. Planner: At run-time, determine which codelets to apply
I. Executor: Perform FFT of a particular size using plan
:. Efficient "plug-in" assembly kernels

Cooley-Tukey FFT algorithm

$$
\begin{aligned}
y[k] & \leftarrow \operatorname{DFT}_{N}(x, k) \equiv \sum_{j=0}^{N-1} x[j] \cdot \omega_{N}^{-k j} \quad x, y \in \mathbb{C}^{N} \\
\omega_{N} & \equiv e^{2 \pi \sqrt{-1} / N} \\
N & \equiv N_{1} \cdot N_{2}
\end{aligned}
$$

Cooley-Tukey FFT algorithm

$$
\begin{array}{rlrl}
y[k] & \leftarrow \operatorname{DFT}_{N}(x, k) \equiv \sum_{j=0}^{N-1} x[j] \cdot \omega_{N}^{-k j} & x, y \in \mathbb{C}^{N} \\
\omega_{N} & \equiv e^{2 \pi \sqrt{-1} / N} \\
N & \equiv N_{1} \cdot N_{2} \\
& \Downarrow & \\
0 \leq k_{1}<N_{1} & \text { and } & 0 \leq k_{2}<N_{2} \\
y\left[k_{1}+k_{2} \cdot N_{1}\right] & \leftarrow & \sum_{n_{2}=0}^{N_{2}-1}\left[\left(\sum_{n_{1}}^{N_{1}-1} x\left[n_{1} \cdot N_{2}+n_{2}\right] \cdot \omega_{N_{1}}^{-k_{1} n_{1}}\right) \cdot \omega_{N}^{-k_{1} n_{2}}\right] \cdot \omega_{N_{2}}^{-k_{2} n_{2}} \\
& & \mathbf{N}_{1} \text {-point DFT} & \text { Twiddle }
\end{array}
$$

Cooley-Tukey FFT algorithm: Encoding in the codelet generator

$$
\begin{gathered}
y[k] \leftarrow \operatorname{DFT}_{N}(x, k) \equiv \sum_{j=0}^{N-1} x[j] \cdot \omega_{N}^{-k j} \quad x, y \in \mathbb{C}^{N} \\
y\left[k_{1}+k_{2} \cdot N_{1}\right] \leftarrow \frac{\sum_{n_{2}=0}^{N_{2}-1}\left[\frac{\left.\left(\sum_{n_{1}}^{N_{1}-1} x\left[n_{1} \cdot N_{2}+n_{2}\right] \cdot \omega_{N_{1}}^{-k_{1} n_{1}}\right) \cdot \omega_{N}^{-k_{1} n_{2}}\right] \cdot \omega_{N_{2}}^{-k_{2} n_{2}}}{\mathbf{N}_{1} \text {-point DFT }} \frac{\text { Twiddle }}{\mathbf{N}_{2} \text {-point DFT }}\right.}{}=\frac{}{\text { Twid }}
\end{gathered}
$$

let $\operatorname{dftgen}(N, x) \equiv$ fun $k \rightarrow \ldots \quad \# \operatorname{DFT}_{N}(x, k)$
let cooley_tukey $\left(N_{1}, N_{2}, x\right) \equiv$
let $\hat{x} \equiv$ fun $n_{2}, n_{1} \rightarrow x\left(n_{2}+n_{1} \cdot N_{2}\right)$ in
let $\mathrm{G}_{1} \equiv$ fun $n_{2} \rightarrow \operatorname{dftgen}\left(N_{1}, \hat{x}\left(n_{2}, \ldots-\right)\right)$ in
let $\mathrm{W} \equiv$ fun $k_{1}, n_{2} \rightarrow \mathbf{G}_{1}\left(n_{2}, k_{1}\right) \cdot \omega_{N}^{-k_{1} n_{2}}$ in
(Functional pseudo-code)
let $\mathrm{G}_{2} \equiv$ fun $k_{1} \rightarrow \operatorname{dftgen}\left(N_{2}, \mathrm{~W}\left(k_{1},{ }_{--}\right)\right)$
in
fun $k \rightarrow \mathbf{G}_{2}\left(k \bmod N_{1}, k \operatorname{div} N_{1}\right)$

Planner phase

Published in Proc. IEEE, vol. 93, no. 2, pp. 216-231 (2005).

```
fftw_plan plan;
fftw_complex in[n], out[n];
```

/* plan a 1d forward DFT: */
plan $=$ fftw_plan_dft_1d(n, in, out,
FFTW_FORWARD, FFTW_PATIENT);

Assembles plan using dynamic programming

Initialize in[] with some data...
fftw_execute(plan); // compute DFT
Write some new data to in [] ...
fftw_execute(plan); // reuse plan
Fig. 8. Example of FFTW's use. The user must first create a plan, which can be then used for many transforms of the same size.

Fig. 9. Effect of planner tradeoffs: comparison of patient, impatient, and estimate modes in FFTW for double-precision 1d complex DFTs, power-oftwo sizes, on a 2 GHz PowerPC 970 (G5). Compiler and flags as in Fig. 4.

Fig. 10. Effects of tuning FFTW on one machine and running it on another. The graph shows the performance of one-dimensional DFTs on two machines: a 2 GHz PowerPC 970 (G5), and a 2.8 GHz Pentium IV. For each machine, we report both the speed of FFTW tuned to that machine and the speed tuned to the other machine.

Software/Hardware Generation for DSP Algorithms

SPIRAL (1998)

:. Code generator
A. Represent linear transformations as formulas
H. Symbolic algebra + rewrite engine transforms formulas
:. Search using variety of techniques (more later)

High-level representations and rewrite rules

$$
\begin{aligned}
\mathbf{D F T}_{N} & \equiv\left[\omega_{N}^{k l}\right]_{0 \leq k, l<N} \\
\mathbf{D C T - 2}_{N} & \equiv\left[\cos \frac{(2 l+1) k \pi}{2 N}\right]_{0 \leq k, l<N} \\
& \vdots \\
n=k \cdot m: & \\
\Longrightarrow \mathbf{D F T}_{n} & \rightarrow\left(\mathbf{D F T}_{k} \otimes I_{m}\right) T_{m}^{n}\left(I_{k} \otimes \mathbf{D F T}_{m}\right) L_{k}^{n}
\end{aligned}
$$

$n=k \cdot m, \operatorname{gcd}(k, m)=1:$
$\Longrightarrow \mathbf{D F T}_{n} \rightarrow P_{n}\left(\mathbf{D F T}_{k} \otimes \mathbf{D F T}_{m}\right) Q_{n}$
p is prime:
$\Longrightarrow \mathbf{D F T}_{p} \rightarrow R_{p}^{T}\left(I_{1} \oplus \mathbf{D F T}_{p-1} D_{p}\left(I_{1} \oplus \mathbf{D F T}_{p-1}\right) R_{p}\right.$

$$
\mathbf{D F T}_{2} \rightarrow\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

High-level representations expose parallelism

$$
\begin{aligned}
\left(I_{4} \otimes A\right) \cdot\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right] & =\left[\begin{array}{llll}
A & & & \\
& A & & \\
& & A & \\
& & & A
\end{array}\right] \cdot\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
A X_{1} \\
A X_{2} \\
A X_{3} \\
A X_{4}
\end{array}\right]
\end{aligned}
$$

A applied 4 times independently

High-level representations expose parallelism

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \otimes I_{2}\right) \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] & =\left[\begin{array}{ll}
a \cdot I_{2} & b \cdot I_{2} \\
c \cdot I_{2} & d \cdot I_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \\
& =\left[\begin{array}{l}
a\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+b\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right] \\
\left.c\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+d\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]\right]
\end{array}\right.
\end{aligned}
$$

SIMD-vectorizable

Search in SPIRAL

H. Search over ruletrees, i.e., possible formula expansions
H. Empirical search
E. Exhaustive
:. Random
H. Dynamic programming
E. Evolutionary search
E. Hill climbing
A. Machine learning methods

Example: SMP + vectorization results

4-way vectorized + up to 4-threaded + adapted to the memory hierarchy

Source: F. Franchetti (2007), CScADS autotuning workshop

Administrivia

Upcoming schedule changes

H. Some adjustment of topics (TBD)
H. Tu 3/11 - Project proposals due
H. Th 3/13 - SIAM Parallel Processing (attendance encouraged)
H. Tu 4/1 - No class
H. Th 4/3 - Attend talk by Doug Post from DoD HPC Modernization Program

Homework 1:

 Parallel conjugate gradientsH. Put name on write-up!
H. Grading: 100 pts max
:. Correct implementation - 50 pts
H. Evaluation - 30 pts
.. Tested on two samples matrices - 5
H. Implemented and tested on stencil - 10
H. "Explained" performance (e.g., per proc, load balance, comp. vs. comm) - 15
H. Performance model - 15 pts
H. Write-up "quality" - 5 pts

Projects

H. Proposals due Tu 3/11

A. Your goal should be to do something useful, interesting, and/or publishable!
H. Something you're already working on, suitably adapted for this course
H. Faculty-sponsored/mentored
.. Collaborations encouraged

My criteria for "approving" your project

A. "Relevant to this course:" Many themes, so think (and "do") broadly
.. Parallelism and architectures
H. Numerical algorithms
\#. Programming models
". Performance modeling/analysis

General styles of projects

H. Theoretical: Prove something hard (high risk)
H. Experimental:
-. Parallelize something
:. Take existing parallel program, and improve it using models \& experiments
:. Evaluate algorithm, architecture, or programming model

Examples

:. Anything of interest to a faculty member/project outside CoC
A. Parallel sparse triple product $\left(R^{*} A^{*} R^{\top}\right.$, used in multigrid)
:. Future FFT
:. Out-of-core or I/O-intensive data analysis and algorithms
H. Block iterative solvers (convergence \& performance trade-offs)
:. Sparse LU
H. Data structures and algorithms (trees, graphs)
-. Look at mixed-precision
H. Discrete-event approaches to continuous systems simulation
H. Automated performance analysis and modeling, tuning
:. "Unconventional," but related
H. Distributed deadlock detection for MPI
.. UPC language extensions (dynamic block sizes)
\#. Exact linear algebra

Sparse linear algebra

Key distinctions in autotuning work for sparse kernels

A. Data structure transformations
:. Recall HW1
7. Sparse data structures require meta-data overhead
E. Sparse matrix-vector multiply (SpMV) is memory bound
F. Bandwidth limited \Rightarrow minimize data structure size
\#. Run-time tuning: Need lightweight techniques
H. Extra flops pay off

Sparsity (1998) and OSKI (2005)

:. Berkeley projects (BeBOP group: Demmel \& Yelick; Im, Vuduc, et al.)
:. \quad PHiPAC \Rightarrow SPARSITY \Rightarrow OSKI
:. On-going: See multicore optimizations by Williams, et al., in SC 2007
H. Motivation: Sparse matrix-vector multiply (SpMV) $\leq 10 \%$ peak or less
\#. Indirect, irregular memory access
\#. Low q vs. dense case
". Depends on machine and matrix, possibly unknown until run-time

Matrix 02-raefsky3

333 MHz Sun Ultra 2i, Sun C v6.0: ref=35 Mflop/s

column block size (c)
2 GHz Pentium M, Intel C v8.1: ref=308 Mflop/s

900 MHz Ultra 3, Sun CC v6: ref=54 Mflop/s

column block size (c)
1.4 GHz Opteron, gcc 3.4.2: ref=308 Mflop/s

375 MHz Power3, IBM xIc v6: ref=145 Mflop/s

1.3 GHz Power4, IBM xIc v6: ref=577 Mflop/s

column block size (c)
900 MHz Itanium 2, Intel C v8: ref=275 Mflop/s

3×3 Register Blocking Example

3×3 Register Blocking Example

50\% extra zeros
1.5x faster
($2 / 3$ time) on Pentium III

How OSKI tunes

Library Install-Time (offline) $\rightleftharpoons \square$ Application Run-Time

How OSKI tunes

How OSKI tunes

Heuristic model example: Selecting a block size

H. Idea: Hybrid off-line/run-time model
". Offline benchmark: Measure Mflops(r, c) on dense matrix in sparse format
\#. Run-time: Sample matrix to quickly estimate Fill(r, c)
\#. Run-time model: Choose r, c to maximize Mflops $(r, c) /$ Fill((r, c)

- Accurate in practice (selects $r \times c$ with performance within 10% of best)
A. Run-time cost?
A. Roughly 40 SpMVs
". Dominated by conversion (~80\%)

Workload tuning

:. Consider BiCG solver: Equal mix of $A^{*} x$ and $A^{\top *} y$ (independent)
H. 3×1 : A $\cdot x$, AT $\cdot y=1053,343 \mathrm{Mflop} / \mathrm{s} \Rightarrow 517 \mathrm{Mflop} / \mathrm{s}$
H. 3×3 : A•x, AT $\cdot y=806,826 \mathrm{Mflop} / \mathrm{s} \Rightarrow 816 \mathrm{Mflop} / \mathrm{s}$
H. Higher-level operation: Fused ($A^{*} x, A^{\top *} y$) kernel
-. $3 \times 1: 757$ Mflop/s
H. 3×3 : $1400 \mathrm{Mflop} / \mathrm{s}$

Tensor Contraction Engine (TCE) for quantum chemistry

Tensor Contraction Engine (TCE)

E. Application domain: Quantum chemistry
A. Electronic structure calculations
E. Dominant computation expressible as a "tensor contraction"
H. TCE generates a complete parallel program from a high-level spec
H. Automates time-space trade-offs
:. Output
H. S. Hirata (2002), and many others
H. Following presentation taken from Proc. IEEE 2005 special issue

Motivation: Simplify program development

 $-\operatorname{sum}\left[t[i, c]{ }^{*} t[k, a] * v[k, b, c, j], k, c\right]+2 * \operatorname{sum}[t[i, k, a, c] * v[k, b, c, j], k, c]-\operatorname{sum}[t[i, k, c, a] * v[k, b, c, j], k, c]+2 * \operatorname{sum}[t[k, d] * t[i, j, a, c] * v[k, b, d, c], k, c, d]-\operatorname{sum}[t[j, d] * t[i, k, a, c] *$ v[k,b,d,c], k,c,d] - sum[t[j,c] * t[k,a] * v[k,b,i,c], k,c] - sum[t[j,k,c,a] * v[k,b,i,c], k,c] - sum[t[i,k,a,c] * v[k,b,j,c], k,c] + sum[t[i,c] * t[j,d] * t[k,a] * t[l,b] * v[k,l,c,d], k,l,c,d] - 2 *

 $\left.{ }^{*} \mathrm{t}[1, \mathrm{~b}] * \operatorname{v}[\mathrm{k}, \mathrm{l}, \mathrm{i}, \mathrm{j}], \mathrm{k}, \mathrm{l}\right]+\operatorname{sum}\left[\mathrm{t}[\mathrm{k}, \mathrm{l}, \mathrm{a}, \mathrm{b}] *{ }_{\mathrm{v}[\mathrm{k}, 1, \mathrm{i}, \mathrm{j}, \mathrm{l}, \mathrm{k}, \mathrm{l}]}+\operatorname{sum}[\mathrm{t}[\mathrm{k}, \mathrm{b}] * \mathrm{t}[1, \mathrm{~d}] * \mathrm{t}[i, \mathrm{j}, \mathrm{a}, \mathrm{c}] * \mathrm{v}[1, \mathrm{k}, \mathrm{c}, \mathrm{d}], \mathrm{k}, \mathrm{l}, \mathrm{c}, \mathrm{d}]+\operatorname{sum}[\mathrm{t}[\mathrm{k}, \mathrm{a}] * \mathrm{t}[1, \mathrm{~d}] * \mathrm{t}[\mathrm{i}, \mathrm{j}, \mathrm{c}, \mathrm{b}] * \mathrm{v}[1, \mathrm{k}, \mathrm{c}, \mathrm{d}], \mathrm{k}, \mathrm{l}, \mathrm{c}, \mathrm{d}]+\operatorname{sum}[\mathrm{t}[\mathrm{i}, \mathrm{c}] * \mathrm{t}[1, \mathrm{~d}] *\right.$

 $\mathrm{v}[\mathrm{a}, \mathrm{b}, \mathrm{i}, \mathrm{j}]$

Rewriting to reduce operation counts

$$
\begin{aligned}
& \text { Naïvely, } \approx 4 \times \mathbf{N}^{10} \text { flops } \\
& S_{a b i j}=\sum_{c, d, e, f, k, l} A_{a c i k} \times B_{b e f l} \times C_{d f j k} \times D_{c d e l} \\
& \Downarrow \\
& S_{a b i j}=\sum_{c, k}\left(\sum_{d, f}\left(\sum_{e, l} B_{b e f l} \times D_{c d e l}\right) \times C_{d f j k}\right) \times A_{a c i k}
\end{aligned}
$$

Assuming associativity and distributivity, $\approx 6 \times \mathbf{N}^{6}$ flops, but also requires temporary storage.

Source: Baumgartner, et al. (2005)

Operation and storage minimization via loop fusion

$$
\begin{aligned}
T_{b c d f}^{(1)} & =\sum_{e, l} B_{b e f l} \times D_{c d e l} \\
T_{b c j k}^{(2)} & =\sum_{d, f} T_{b c d f}^{(1)} \times C_{d f j k} \\
S_{a b i j} & =\sum_{c, k} T_{b c j k}^{(2)} \times A_{a c i k}
\end{aligned}
$$

$T 1=T 2=S=0$
for b, c, d, e, f, l do

$$
T 1[b, c, d, f]+=B[b, e, f, l] \cdot D[c, d, e, l]
$$

for b, c, d, f, j, k do

$$
T 2[b, c, j, k]+=T 1[b, c, d, f] \cdot C[d, f, j, k]
$$

for a, b, c, i, j, k do

$$
S[a, b, i, j]+=T 2[b, c, j, k] \cdot A[a, c, i, k]
$$

Operation and storage minimization via loop fusion

$$
\begin{aligned}
T_{b c d f}^{(1)} & =\sum_{e, l} B_{b e f l} \times D_{c d e l} \\
T_{b c j k}^{(2)} & =\sum_{d, f} T_{b c d f}^{(1)} \times C_{d f j k} \\
S_{a b i j} & =\sum_{c, k} T_{b c j k}^{(2)} \times A_{a c i k}
\end{aligned}
$$

$T 1=T 2=S=0$
for b, c, d, e, f, l do
$T 1[b, c, d, f]+=B[b, e, f, l] \cdot D[c, d, e, l]$
for b, c, d, f, j, k do
$T 2[b, c, j, k]+=T 1[b, c, d, f] \cdot C[d, f, j, k]$ for a, b, c, i, j, k do

$$
S[a, b, i, j]+=T 2[b, c, j, k] \cdot A[a, c, i, k]
$$

$$
S=0
$$

for b, c do

$$
T 1 f \leftarrow 0, T 2 f \leftarrow 0
$$

for d, f do

$$
\text { for } e, l \text { do }
$$

$$
T 1 f+=B[b, e, f, l] \cdot D[c, d, e, l]
$$

for j, k do

$$
T 2 f[j, k]+=T 1 f \cdot C[d, f, j, k]
$$

$$
\text { for } a, i, j, k \text { do }
$$

$$
S[a, b, i, j]+=T 2 f[j, k] \cdot A[a, c, i, k]
$$

for a, e, c, f do
for i, j do

$$
X_{a e c f}+=T_{i j a e} \cdot T_{i j c f} \longleftarrow \text { "Contraction" of } T \text { over } i, j
$$

for c, e, b, k do

$$
T_{c e b k}^{(1)} \leftarrow f_{1}(c, e, b, k)
$$

for a, f, b, k do
$T_{a f b k}^{(2)} \leftarrow f_{2}(a, f, b, k)$
for c, e, a, f do
for b, k do
$Y_{c e a f}+=T_{c e b k}^{(1)} \cdot T_{a f b k}^{(2)} \longleftarrow$ "Contraction" over $T^{(1)}$ and $T^{(2)}$
for c, e, a, f do

$$
E+=X_{\text {aecf }} \cdot Y_{\text {ceaf }}
$$

Time-space trade-offs

for a, e, c, f do

Max index of $a-f: O(1000)$ $i-k$: O(100)
for i, j do

$$
X_{a e c f}+=T_{i j a e} \cdot T_{i j c f}
$$

for c, e, b, k do

$$
T_{c e b k}^{(1)} \leftarrow f_{1}(c, e, b, k)
$$

for a, f, b, k do

Same indices
\Rightarrow Loop fusion candidates

$$
T_{a f b k}^{(2)} \leftarrow f_{2}(a, f, b, k)
$$

for $c, e, a, f \mathbf{d o}$
for b, k do

$$
Y_{c e a f}+=T_{c e b k}^{(1)} \cdot T_{a f b k}^{(2)}
$$

for c, e, a, f do

$$
E+=X_{a e c f} \cdot Y_{\text {ceaf }}
$$

Time-space trade-offs

for a, e, c, f do \longrightarrow for a, e, c, f do
for i, j do

$$
X_{a e c f}+=T_{i j a e} \cdot T_{i j c f}
$$

for c, e, b, k do

$$
T_{c e b k}^{(1)} \leftarrow f_{1}(c, e, b, k)
$$

for a, f, b, k do

$$
T_{a f b k}^{(2)} \leftarrow f_{2}(a, f, b, k)
$$

for c, e, a, f do
for b, k do

$$
Y_{c e a f}+=T_{c e b k}^{(1)} \cdot T_{a f b k}^{(2)}
$$

for i, j do

$$
X_{a e c f}+=T_{i j a e} \cdot T_{i j c f}
$$

for a, c, e, f, b, k do

$$
T_{c e b k}^{(1)} \leftarrow f_{1}(c, e, b, k) \quad \text { Add } \quad \text { extra }
$$

for a, e, c, f, b, k do flops

$$
T_{a f b k}^{(2)} \leftarrow f_{2}(a, f, b, k)
$$

for c, e, a, f do for b, k do

$$
Y_{c e a f}+=T_{c e b k}^{(1)} \cdot T_{a f b k}^{(2)}
$$

for c, e, a, f do

$$
E+=X_{a e c f} \cdot Y_{\text {ceaf }} \quad E+=X_{\text {aecf }} \cdot Y_{\text {ceaf }}
$$

Time-space trade-offs

for a, e, c, f do
for i, j do

$$
X_{a e c f}+=T_{i j a e} \cdot T_{i j c f}
$$

for c, e, b, k do

$$
T_{c e b k}^{(1)} \leftarrow f_{1}(c, e, b, k)
$$

for a, f, b, k do

$$
T_{a f b k}^{(2)} \leftarrow f_{2}(a, f, b, k)
$$

for c, e, a, f do
for b, k do

$$
Y_{c e a f}+=T_{c e b k}^{(1)} \cdot T_{a f b k}^{(2)}
$$

for c, e, a, f do

$$
E+=X_{a e c f} \cdot Y_{\text {ceaf }}
$$

for a, e, c, f do \Leftarrow Fused for i, j do

$$
x+=T_{i j a e} \cdot T_{i j c f}
$$

for b, k do

$$
\begin{aligned}
& T_{c e b k}^{(1)} \leftarrow f_{1}(c, e, b, k) \\
& T_{a f b k}^{(2)} \leftarrow f_{2}(a, f, b, k) \\
& y+=T_{c e b k}^{(1)} \cdot T_{a f b k}^{(2)}
\end{aligned}
$$

$$
E+=x \cdot y
$$

Tiled \& partially fused for $a^{B}, e^{B}, c^{B}, f^{B}$ do
for a, e, c, f do for i, j do

$$
X_{a e c f}+=T_{i j a e} \cdot T_{i j c f}
$$

for c, e, b, k do

$$
T_{c e b k}^{(1)} \leftarrow f_{1}(c, e, b, k)
$$

for a, f, b, k do
$T_{a f b k}^{(2)} \leftarrow f_{2}(a, f, b, k)$
for c, e, a, f do
for b, k do

$$
Y_{c e a f}+=T_{c e b k}^{(1)} \cdot T_{a f b k}^{(2)}
$$

for c, e, a, f do

$$
E+=X_{a e c f} \cdot Y_{\text {ceaf }}
$$

for a, e, c, f do
for i, j do

$$
\hat{X}_{a e c f}+=T_{i j a e} \cdot T_{i j c f}
$$

for b, k do
for c, e do

$$
\hat{T}_{c e}^{(1)} \leftarrow f_{1}(c, e, b, k)
$$

for a, f do

$$
\hat{T}_{a f}^{(2)} \leftarrow f_{2}(a, f, b, k)
$$

for c, e, a, f do

$$
\hat{Y}_{c e a f}+=\hat{T}_{c e}^{(1)} \cdot \hat{T}_{a f}^{(2)}
$$

for c, e, a, f do

$$
E+=\hat{X}_{a e c f} \cdot \hat{Y}_{c e a f}
$$

Next time:
Empirical compilers and tools
"In conclusion..."

Backup slides

