
Autotuning (2/2):
Specialized code generators

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.18] Thursday, March 6, 2008

1

Today’s sources

CS 267 at UCB (Demmel & Yelick)

Papers from various autotuning projects

PHiPAC, ATLAS, FFTW, SPIRAL, TCE

See: Proc. IEEE 2005 special issue on Program Generation, Optimization, and Platform
Adaptation

Me (for once!)

2

Review:
Cache-oblivious algorithms

3

A recursive algorithm for matrix-multiply

A11 A12

A21 A22

C11 C12

C21 C22

B11 B12

B21 B22
Divide all dimensions in half

Bilardi, et al.: Use grey-code ordering

No. of misses, with tall-cache assumption:

Q(n) =

{
8 · Q(n

2) if n >
√

M
3

3n2 otherwise

}
≤ Θ

(
n3

L
√

M

)

4

Performance-engineering
challenges

Mini-Kernel

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA

Iterative

ATLAS CGw/S
ATLAS Unleashed

5

t=0
x=0 16

5

8

Cache-oblivious stencil computation

10

Theorem [Frigo & Strumpen (ICS 2005)]:
d = dimension ⇒

Q(n, t; d) = O

(
nd · t

M
1
d

)

6

Cache-conscious algorithm

Source: Datta, et al. (2007)

7

Survey of autotuning

8

Early idea seedlings

Polyalgorithms: John R. Rice

(1969) “A polyalgorithm for the automatic solution of nonlinear equations”

(1976) “The algorithm selection problem”

Profiling and feedback-directed compilation

(1971) D. Knuth: “An empirical study of FORTRAN programs”

(1982) S. Graham, P. Kessler, M. McKusick: gprof

(1991) P. Chang, S. Mahlke, W-m. W. Hwu: “Using profile information to assist classic code optimizations”

Code generation from high-level representations

(1989) J. Johnson, R.W. Johnson, D. Rodriguez, R. Tolimieri: “A methodology for designing, modifying, and
implementing Fourier Transform algorithms on various architectures.”

(1992) M. Covell, C. Myers, A. Oppenheim: “Computer-aided algorithm design and arrangement” (1992)

9

Why doesn’t the compiler do the
dirty work?

Why doesn’t the compiler do all of this?

Analysis

Over-specified dependencies

Correctness requirements

Limited access to relevant run-time information

Architecture: Realistic hardware models?

Engineering: Hard to modify a production compiler

10

Source: Voss, ADAPT compiler project: http://www.eecg.toronto.edu/~voss/AdaptPage/results.html

11

http://www.eecg.toronto.edu/~voss/AdaptPage/results.html
http://www.eecg.toronto.edu/~voss/AdaptPage/results.html

Source: Voss, ADAPT compiler project: http://www.eecg.toronto.edu/~voss/AdaptPage/results.html

12

http://www.eecg.toronto.edu/~voss/AdaptPage/results.html
http://www.eecg.toronto.edu/~voss/AdaptPage/results.html

Source: Voss, ADAPT compiler project: http://www.eecg.toronto.edu/~voss/AdaptPage/results.html

13

http://www.eecg.toronto.edu/~voss/AdaptPage/results.html
http://www.eecg.toronto.edu/~voss/AdaptPage/results.html

Automatic performance tuning, or
“autotuning”

Two-phase methodology for producing automatically tuned code

Given: Computational kernel or program; inputs; machine

Identify and generate a parameterized space of candidate implementations

Select the fastest one using empirical modeling and automated experiments

“Autotuner” = System that implements this

Usually domain-specific (exception: “autotuning/iterative compilers”)

Leverage back-end compiler for performance and portability

14

How an autotuner differs from a
compiler (roughly)

Compiler Autotuner

Input

Code generation
time

Implementation
selection

General-purpose
source code

Specification

User responsive Long, but amortized

Static analysis;
some run-time

profiling/feedback

Automated empirical
models and
experiments

15

m0

n0

k0 = 1 Mflop/s

Example: What a search space looks like

Source: PHiPAC Project at UC Berkeley (1997)

Platform: Sun Ultra IIi

16 double regs

667 Mflop/s peak

Unrolled, pipelined
inner-kernel

Sun cc v5.0 compiler

16

17

Dense linear algebra

18

PHiPAC (1997)

Portable High-Performance ANSI C [Bilmes, Asanovic, Chin, Demmel (1997)]

Coding guidelines: C as high-level assembly language

Code generator for multi-level cache- and register-blocked matrix multiply

Exhaustive search over all parameters

Began as class project which beat the vendor BLAS

19

PHiPAC coding guideline example:
Removing false dependencies

Use local variables to remove false dependencies

a[i] = b[i] + c;
a[i+1] = b[i+1] * d;

float f1 = b[i];
float f2 = b[i+1];

a[i] = f1 + c;
a[i+1] = f2 * d;

False read-after-write hazard
between a[i] and b[i+1]

In C99, may declare a & b unaliased
(“restrict” keyword)

20

ATLAS (1998)

“Automatically Tuned Linear Algebra Software” — [R.C. Whaley and J.
Dongarra (1998)]

Overcame PHiPAC shortcomings on x86 platforms

Copy optimization, prefetch, alternative schedulings

Extended to full BLAS, some LAPACK support (e.g., LU)

Code generator (written in C, output C w/ inline-assembly) with search

Copy optimization prunes much of PHiPAC’s search space

“Simple” line searches

See: iterative floating-point kernel optimizer (iFKO) work

21

Search vs. modeling

Yotov, et al. “Is search really
necessary to generate high-
performance BLAS?”

“Think globally, search locally”

Small gaps ⇒ local search

Large gaps ⇒ refine model

“Unleashed” ⇒ hand-optimized

plug-in kernels

22

Signal processing

23

Source: J. Johnson (2007), CScADS autotuning workshop

pseudo
Mflop/s

Motivation for performance tuning

24

FFTW (1997)

“Fastest Fourier Transform in the West” [M. Frigo, S. Johnson (1997)]

“Codelet” generator (in OCaml)

Explicit represent a small fixed-size transform by its computation DAG

Optimize DAG: Algebraic transformations, constant folding, “DAG transposition”

Schedule DAG cache-obliviously and output as C source code

Planner: At run-time, determine which codelets to apply

Executor: Perform FFT of a particular size using plan

Efficient “plug-in” assembly kernels

25

26

27

Cooley-Tukey FFT algorithm

y[k] ← DFTN (x, k) ≡
N−1∑

j=0

x[j] · ω−kj
N x, y ∈ CN

ωN ≡ e2π
√
−1/N

N ≡ N1 · N2

⇓
0 ≤ k1 < N1 and 0 ≤ k2 < N2

y[k1 + k2 · N1] ←
N2−1∑

n2=0

[(
N1−1∑

n1

x[n1 · N2 + n2] · ω−k1n1
N1

)
· ω−k1n2

N

]
· ω−k2n2

N2

28

Cooley-Tukey FFT algorithm

N2-point DFT

N1-point DFT Twiddle

y[k] ← DFTN (x, k) ≡
N−1∑

j=0

x[j] · ω−kj
N x, y ∈ CN

ωN ≡ e2π
√
−1/N

N ≡ N1 · N2

⇓
0 ≤ k1 < N1 and 0 ≤ k2 < N2

y[k1 + k2 · N1] ←
N2−1∑

n2=0

[(
N1−1∑

n1

x[n1 · N2 + n2] · ω−k1n1
N1

)
·ω−k1n2

N

]
·ω−k2n2

N2

29

Cooley-Tukey FFT algorithm: Encoding in the codelet generator

N2-point DFT

N1-point DFT Twiddle

y[k] ← DFTN (x, k) ≡
N−1∑

j=0

x[j] · ω−kj
N x, y ∈ CN

y[k1 + k2 · N1] ←
N2−1∑

n2=0

[(
N1−1∑

n1

x[n1 · N2 + n2] · ω−k1n1
N1

)
·ω−k1n2

N

]
·ω−k2n2

N2

(Functional
pseudo-code)

let dftgen(N,x) ≡ fun k → . . . # DFTN (x, k)
let cooley tukey(N1, N2, x) ≡

let x̂ ≡ fun n2, n1 → x(n2 + n1 · N2) in
let G1 ≡ fun n2 → dftgen(N1, x̂(n2,)) in
let W ≡ fun k1, n2 → G1(n2, k1) · ω−k1n2

N in
let G2 ≡ fun k1 → dftgen(N2,W(k1,))
in

fun k → G2(k mod N1, k div N1)

30

Planner phase

Assembles plan
using dynamic
programming

31

32

G5

P4

33

SPIRAL (1998)

Code generator

Represent linear transformations as formulas

Symbolic algebra + rewrite engine transforms formulas

Search using variety of techniques (more later)

34

Source: J. Johnson (2007), CScADS autotuning workshop

35

Source: J. Johnson (2007), CScADS autotuning workshop

36

High-level representations and rewrite rules

DFTN ≡
[
ωkl

N

]
0≤k,l<N

DCT-2N ≡
[
cos

(2l + 1)kπ

2N

]

0≤k,l<N

...

n = k · m :
=⇒ DFTn → (DFTk ⊗ Im)Tn

m(Ik ⊗DFTm)Ln
k

n = k · m, gcd(k, m) = 1 :
=⇒ DFTn → Pn(DFTk ⊗DFTm)Qn

p is prime :
=⇒ DFTp → RT

p (I1 ⊕DFTp−1Dp(I1 ⊕DFTp−1)Rp

...

DFT2 →
[

1 1
1 −1

]

37

High-level representations expose parallelism

(I4 ⊗A) ·

X1

X2

X3

X4

 =

A
A

A
A

 ·

X1

X2

X3

X4

=

AX1

AX2

AX3

AX4

A applied 4 times independently

38

High-level representations expose parallelism

SIMD-vectorizable

([
a b
c d

]
⊗ I2

)
·

x1

x2

x3

x4

 =
[

a · I2 b · I2

c · I2 d · I2

]
·

x1

x2

x3

x4

=

a

[
x1

x2

]
+ b

[
x3

x4

]

c

[
x1

x2

]
+ d

[
x3

x4

]

39

Search in SPIRAL

Search over ruletrees, i.e., possible formula expansions

Empirical search

Exhaustive

Random

Dynamic programming

Evolutionary search

Hill climbing

Machine learning methods

40

Example: SMP + vectorization results

Source: F. Franchetti (2007), CScADS autotuning workshop

41

Administrivia

42

Upcoming schedule changes

Some adjustment of topics (TBD)

Tu 3/11 — Project proposals due

Th 3/13 — SIAM Parallel Processing (attendance encouraged)

Tu 4/1 — No class

Th 4/3 — Attend talk by Doug Post from DoD HPC Modernization Program

43

Homework 1:
Parallel conjugate gradients

Put name on write-up!

Grading: 100 pts max

Correct implementation — 50 pts

Evaluation — 30 pts

Tested on two samples matrices — 5

Implemented and tested on stencil — 10

“Explained” performance (e.g., per proc, load balance, comp. vs. comm) — 15

Performance model — 15 pts

Write-up “quality” — 5 pts

44

Projects

Proposals due Tu 3/11

Your goal should be to do something useful, interesting, and/or publishable!

Something you’re already working on, suitably adapted for this course

Faculty-sponsored/mentored

Collaborations encouraged

45

My criteria for “approving” your
project

“Relevant to this course:” Many themes, so think (and “do”) broadly

Parallelism and architectures

Numerical algorithms

Programming models

Performance modeling/analysis

46

General styles of projects

Theoretical: Prove something hard (high risk)

Experimental:

Parallelize something

Take existing parallel program, and improve it using models & experiments

Evaluate algorithm, architecture, or programming model

47

Anything of interest to a faculty member/project outside CoC

Parallel sparse triple product (R*A*RT, used in multigrid)

Future FFT

Out-of-core or I/O-intensive data analysis and algorithms

Block iterative solvers (convergence & performance trade-offs)

Sparse LU

Data structures and algorithms (trees, graphs)

Look at mixed-precision

Discrete-event approaches to continuous systems simulation

Automated performance analysis and modeling, tuning

“Unconventional,” but related

Distributed deadlock detection for MPI

UPC language extensions (dynamic block sizes)

Exact linear algebra

Examples

48

Sparse linear algebra

49

Key distinctions in autotuning work
for sparse kernels

Data structure transformations

Recall HW1

Sparse data structures require meta-data overhead

Sparse matrix-vector multiply (SpMV) is memory bound

Bandwidth limited ⇒ minimize data structure size

Run-time tuning: Need lightweight techniques

Extra flops pay off

50

Sparsity (1998) and OSKI (2005)

Berkeley projects (BeBOP group: Demmel & Yelick; Im, Vuduc, et al.)

PHiPAC ⇒ SPARSITY ⇒ OSKI

On-going: See multicore optimizations by Williams, et al., in SC 2007

Motivation: Sparse matrix-vector multiply (SpMV) ≤ 10% peak or less

Indirect, irregular memory access

Low q vs. dense case

Depends on machine and matrix, possibly unknown until run-time

51

52

53

54

55

56

56

50% extra zeros

1.5x faster
(2/3 time) on
Pentium III

57

Library Install-Time (offline) Application Run-Time

How OSKI tunes

58

Library Install-Time (offline) Application Run-Time

Benchmark
data

1. Build for
Target
Arch.

2. Benchmark

Generated
code

variants

How OSKI tunes

59

Library Install-Time (offline) Application Run-Time

Benchmark
data

1. Build for
Target
Arch.

2. Benchmark

Generated
code

variants

Heuristic
models

1. Evaluate
Models

Workload
from program

monitoring History
Matrix

2. Select
Data Struct.

& Code

To user:
Matrix handle
for kernel
calls

How OSKI tunes

60

Heuristic model example:
Selecting a block size

Idea: Hybrid off-line/run-time model

Offline benchmark: Measure Mflops(r, c) on dense matrix in sparse format

Run-time: Sample matrix to quickly estimate Fill(r, c)

Run-time model: Choose r, c to maximize Mflops(r,c) / Fill(r, c)

Accurate in practice (selects r x c with performance within 10% of best)

Run-time cost?

Roughly 40 SpMVs

Dominated by conversion (~80%)

61

Workload tuning

Consider BiCG solver: Equal mix of A*x and AT*y (independent)

3×1: A·x, AT·y = 1053, 343 Mflop/s ⇒ 517 Mflop/s

3×3: A·x, AT·y = 806, 826 Mflop/s ⇒ 816 Mflop/s

Higher-level operation: Fused (A*x, AT*y) kernel

3×1: 757 Mflop/s

3×3: 1400 Mflop/s

62

Tensor Contraction Engine (TCE)
for quantum chemistry

63

Tensor Contraction Engine (TCE)

Application domain: Quantum chemistry

Electronic structure calculations

Dominant computation expressible as a “tensor contraction”

TCE generates a complete parallel program from a high-level spec

Automates time-space trade-offs

Output

S. Hirata (2002), and many others

Following presentation taken from Proc. IEEE 2005 special issue

64

Source: Baumgartner, et al. (2005)

Motivation: Simplify program development

65

Sabij =
∑

c,d,e,f,k,l

Aacik ×Bbefl × Cdfjk ×Dcdel

⇓

Sabij =
∑

c,k

∑

d,f

∑

e,l

Bbefl ×Dcdel

× Cdfjk

×Aacik

Naïvely, ≈ 4 × N10 flops

Assuming associativity and distributivity, ≈ 6 × N6 flops,
but also requires temporary storage.

Source: Baumgartner, et al. (2005)

Rewriting to reduce operation counts

66

T (1)
bcdf =

∑

e,l

Bbefl ×Dcdel

T (2)
bcjk =

∑

d,f

T (1)
bcdf × Cdfjk

Sabij =
∑

c,k

T (2)
bcjk ×Aacik

T1 = T2 = S = 0
for b, c, d, e, f, l do

T1[b, c, d, f] += B[b, e, f, l] · D[c, d, e, l]
for b, c, d, f, j, k do

T2[b, c, j, k] += T1[b, c, d, f] · C[d, f, j, k]
for a, b, c, i, j, k do

S[a, b, i, j] += T2[b, c, j, k] · A[a, c, i, k]

Operation and storage minimization via loop fusion

67

T (1)
bcdf =

∑

e,l

Bbefl ×Dcdel

T (2)
bcjk =

∑

d,f

T (1)
bcdf × Cdfjk

Sabij =
∑

c,k

T (2)
bcjk ×Aacik

T1 = T2 = S = 0
for b, c, d, e, f, l do

T1[b, c, d, f] += B[b, e, f, l] · D[c, d, e, l]
for b, c, d, f, j, k do

T2[b, c, j, k] += T1[b, c, d, f] · C[d, f, j, k]
for a, b, c, i, j, k do

S[a, b, i, j] += T2[b, c, j, k] · A[a, c, i, k]

Operation and storage minimization via loop fusion

S = 0
for b, c do

T1f ← 0, T2f ← 0
for d, f do

for e, l do
T1f += B[b, e, f, l] · D[c, d, e, l]

for j, k do
T2f [j, k] += T1f · C[d, f, j, k]

for a, i, j, k do
S[a, b, i, j] += T2f [j, k] · A[a, c, i, k]

68

Time-space trade-offs

for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for c, e, b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

Integrals, O(1000) flops

“Contraction” of T over i, j

“Contraction” over T(1) and T(2)

Max index of
 a—f: O(1000)
 i—k: O(100)

69

Time-space trade-offs

for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for c, e, b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

Same indices
⇒ Loop fusion candidates

Max index of
 a—f: O(1000)
 i—k: O(100)

70

Time-space trade-offs

for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for c, e, b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for a, c, e, f , b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, e, c, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

Add
extra
flops

71

Time-space trade-offs

for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for c, e, b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

⇐ Fusedfor a, e, c, f do
for i, j do

x += Tijae · Tijcf

for b, k do

T (1)
cebk ← f1(c, e, b, k)

T (2)
afbk ← f2(a, f, b, k)

y += T (1)
cebk · T (2)

afbk

E += x · y

72

for a, e, c, f do
for i, j do

Xaecf += Tijae · Tijcf

for c, e, b, k do

T (1)
cebk ← f1(c, e, b, k)

for a, f, b, k do

T (2)
afbk ← f2(a, f, b, k)

for c, e, a, f do
for b, k do

Yceaf += T (1)
cebk · T (2)

afbk

for c, e, a, f do
E += Xaecf · Yceaf

Tiled & partially fused for aB , eB , cB , fB do
for a, e, c, f do

for i, j do
X̂aecf += Tijae · Tijcf

for b, k do
for c, e do

T̂ (1)
ce ← f1(c, e, b, k)

for a, f do

T̂ (2)
af ← f2(a, f, b, k)

for c, e, a, f do

Ŷceaf += T̂ (1)
ce · T̂ (2)

af

for c, e, a, f do
E += X̂aecf · Ŷceaf

73

74

75

Next time:
Empirical compilers and tools

76

“In conclusion…”

77

Backup slides

78

