Autotuning (2/2): Specialized code generators

Prof. Richard Vuduc

Georgia Institute of Technology

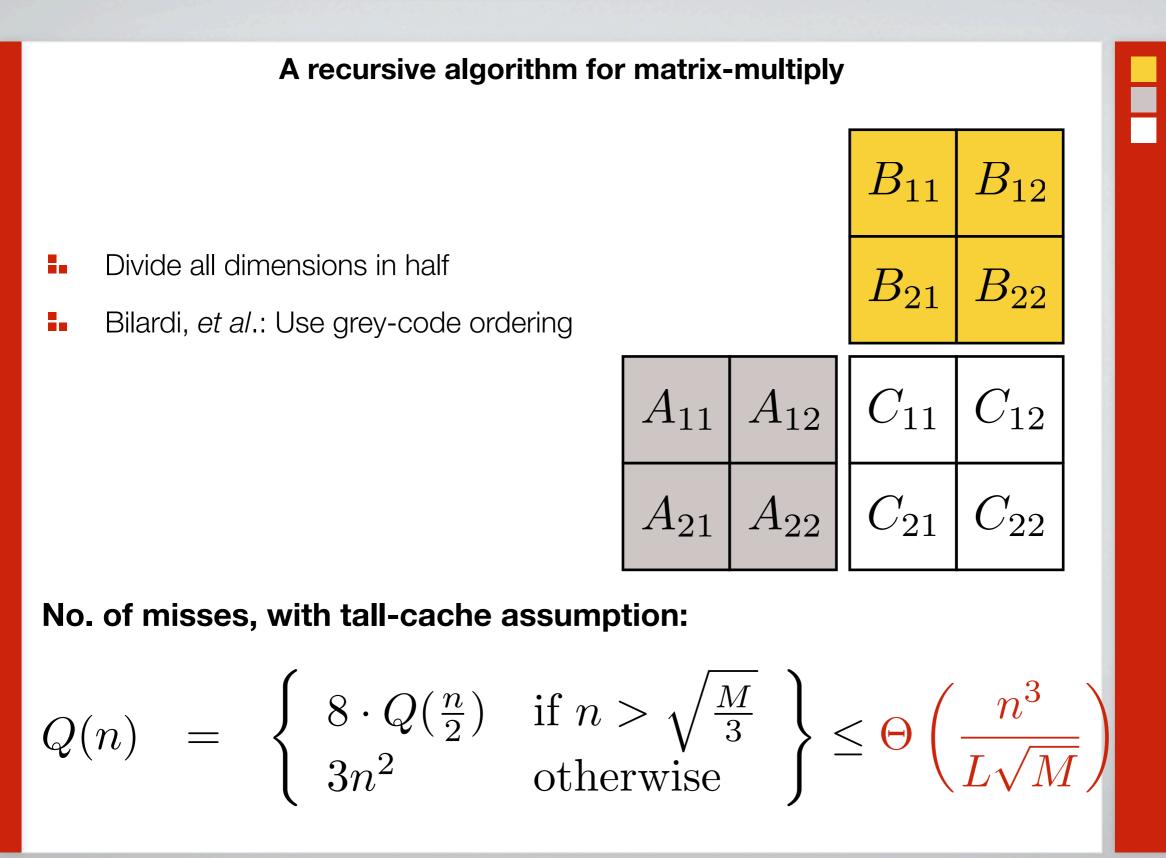
CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.18] Thursday, March 6, 2008

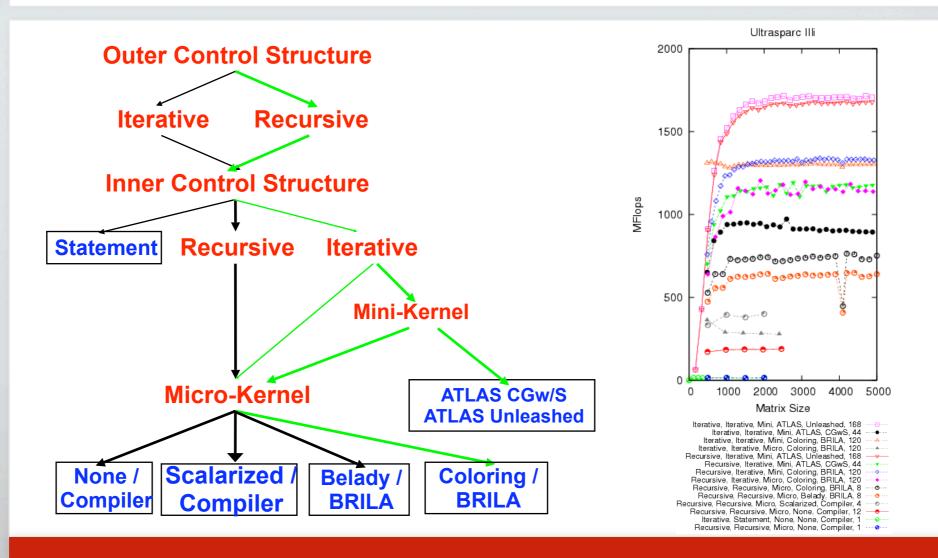
Today's sources

- CS 267 at UCB (Demmel & Yelick)
- Papers from various autotuning projects
 - PHIPAC, ATLAS, FFTW, SPIRAL, TCE
 - See: Proc. IEEE 2005 special issue on Program Generation, Optimization, and Platform Adaptation
- Me (for once!)

Review: Cache-oblivious algorithms



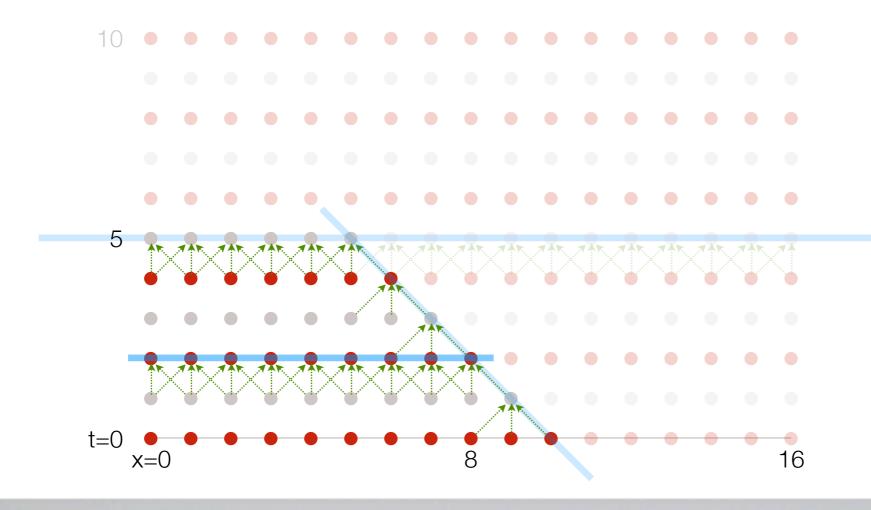
Performance-engineering challenges

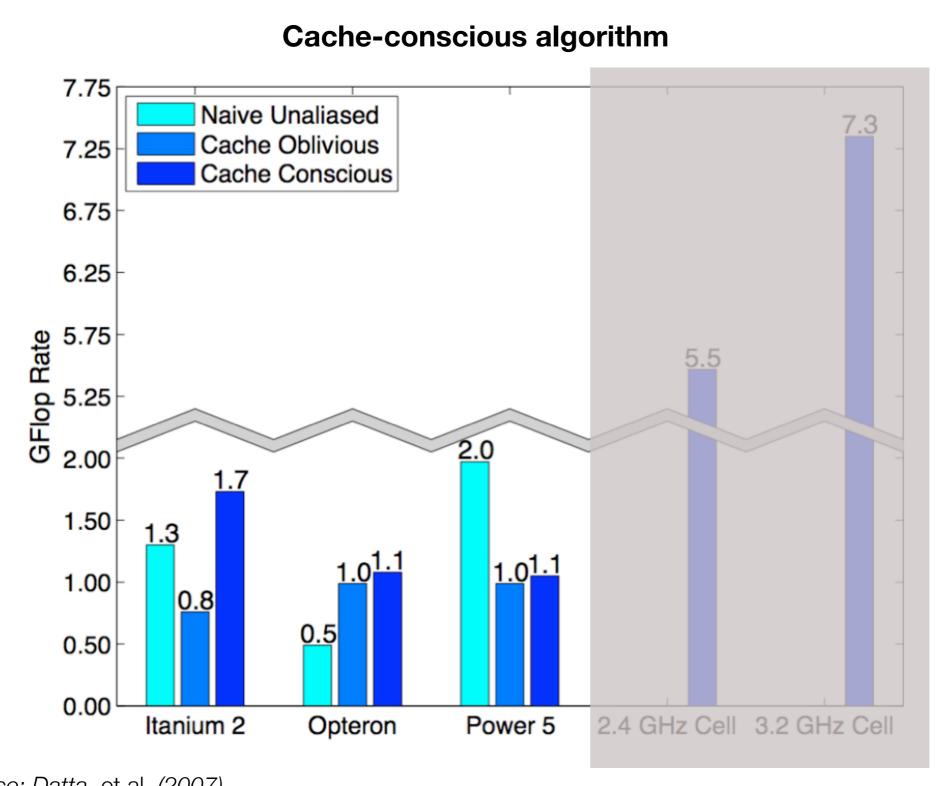


Cache-oblivious stencil computation

Theorem [Frigo & Strumpen (ICS 2005)]: $d = \text{dimension} \Rightarrow$

$$Q(n,t;d) = O\left(\frac{n^d \cdot t}{M^{\frac{1}{d}}}\right)$$





Source: Datta, et al. (2007)

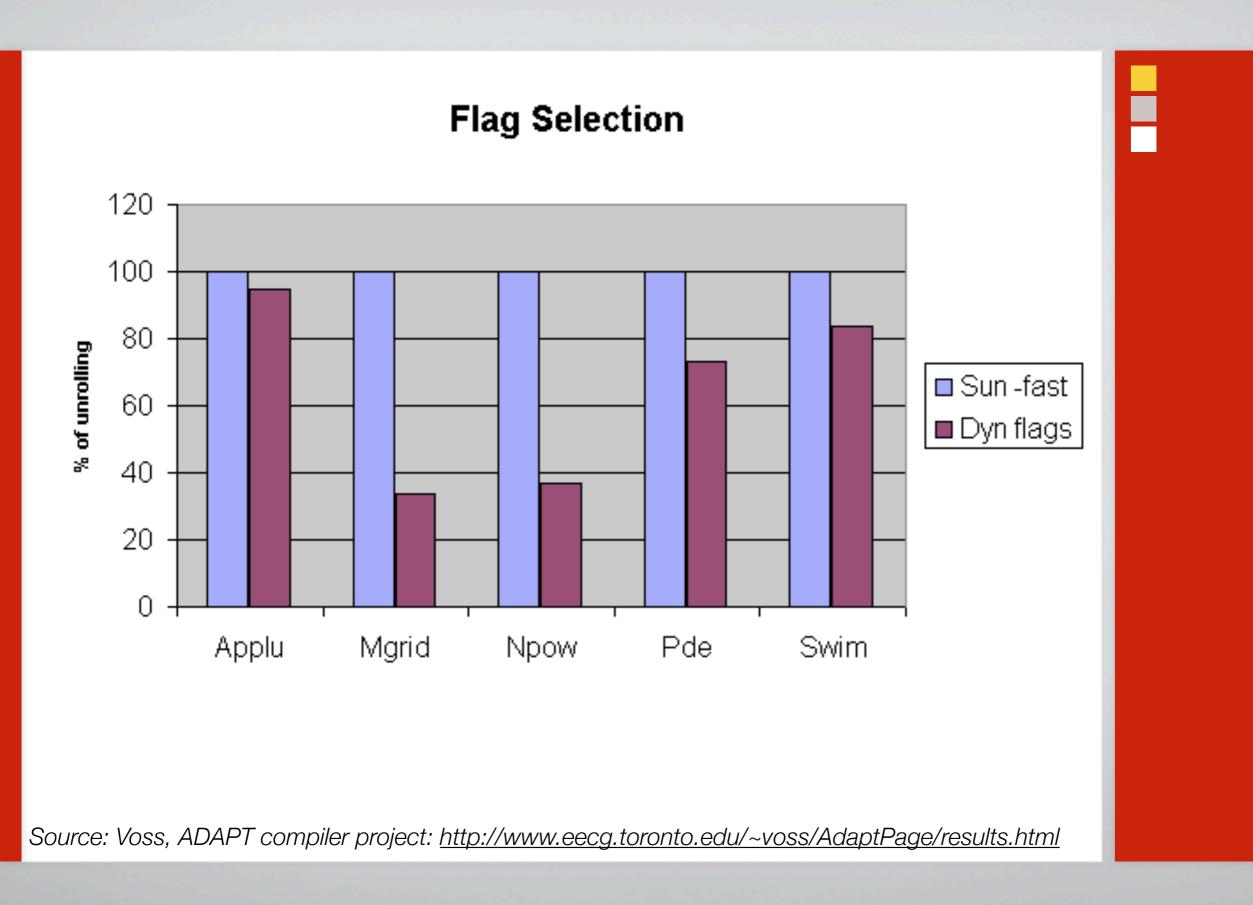
Survey of autotuning

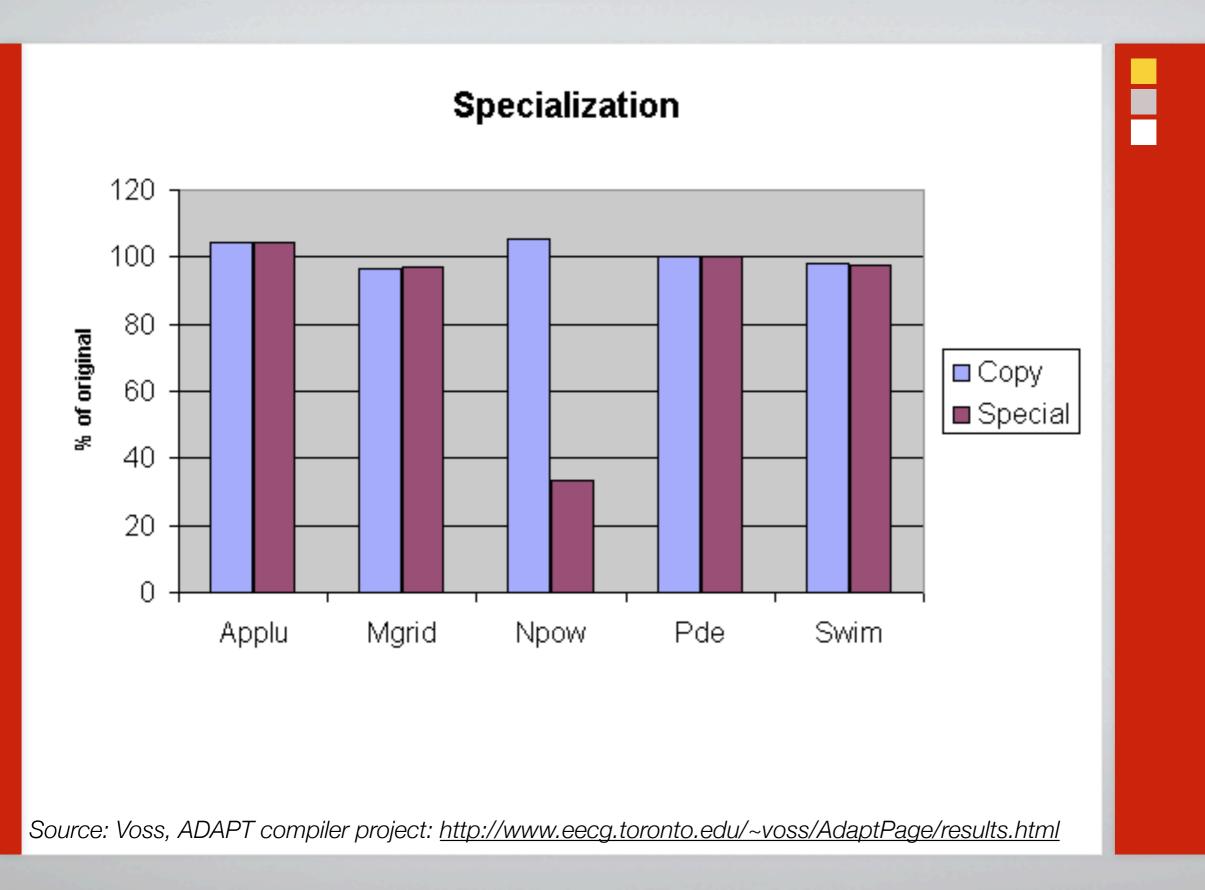
Early idea seedlings

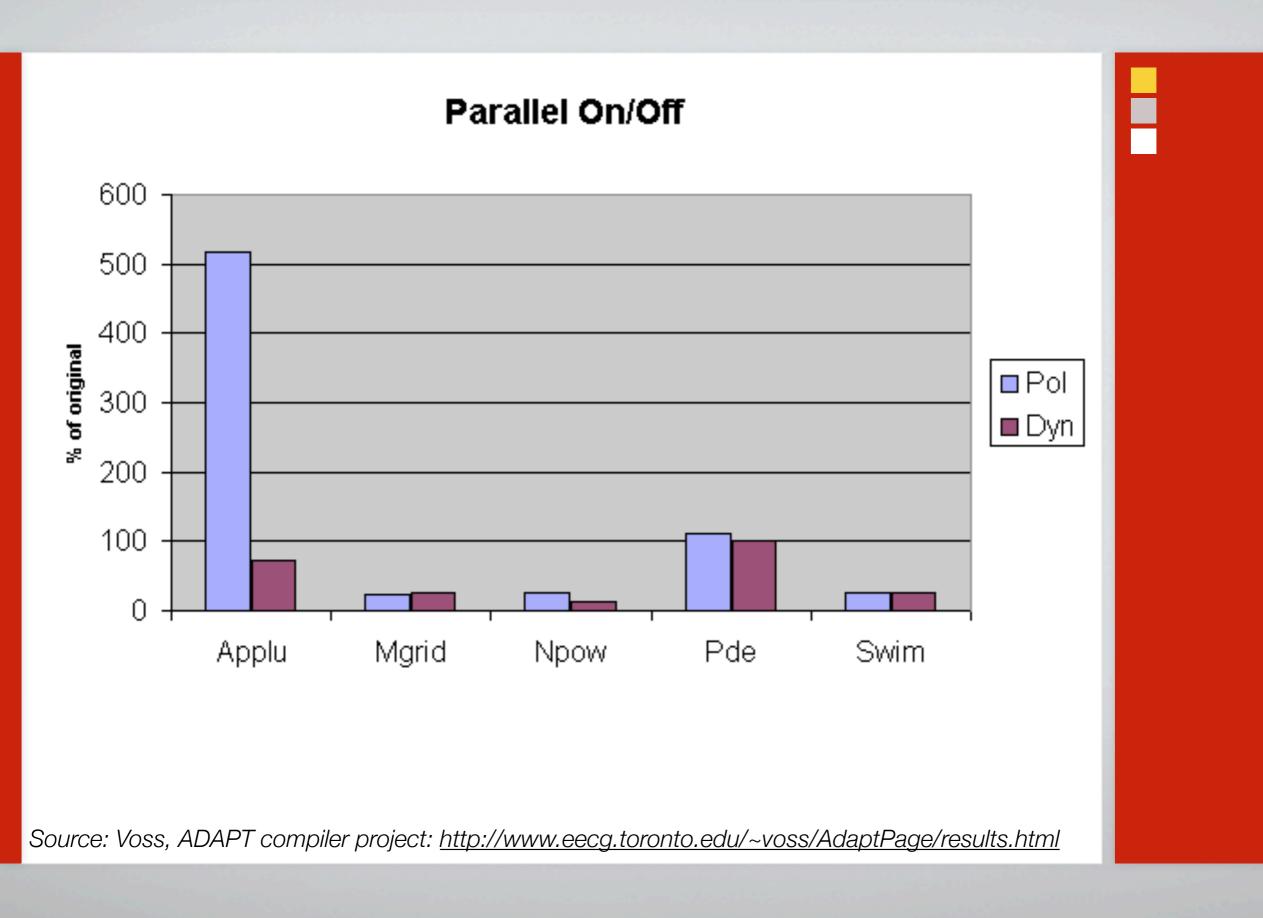
- **Polyalgorithms**: John R. Rice
 - (1969) "A polyalgorithm for the automatic solution of nonlinear equations"
 - (1976) "The algorithm selection problem"
- **Profiling** and feedback-directed compilation
 - (1971) D. Knuth: "An empirical study of FORTRAN programs"
 - . (1982) S. Graham, P. Kessler, M. McKusick: gprof
 - 1991) P. Chang, S. Mahlke, W-m. W. Hwu: "Using profile information to assist classic code optimizations"
- Code generation from high-level representations
 - (1989) J. Johnson, R.W. Johnson, D. Rodriguez, R. Tolimieri: "A methodology for designing, modifying, and implementing Fourier Transform algorithms on various architectures."
 - (1992) M. Covell, C. Myers, A. Oppenheim: "Computer-aided algorithm design and arrangement" (1992)

Why doesn't the compiler do the dirty work?

- Why doesn't the compiler do all of this?
 - Analysis
 - Over-specified dependencies
 - Correctness requirements
 - Limited access to relevant run-time information
 - Architecture: Realistic hardware models?
 - Engineering: Hard to modify a production compiler





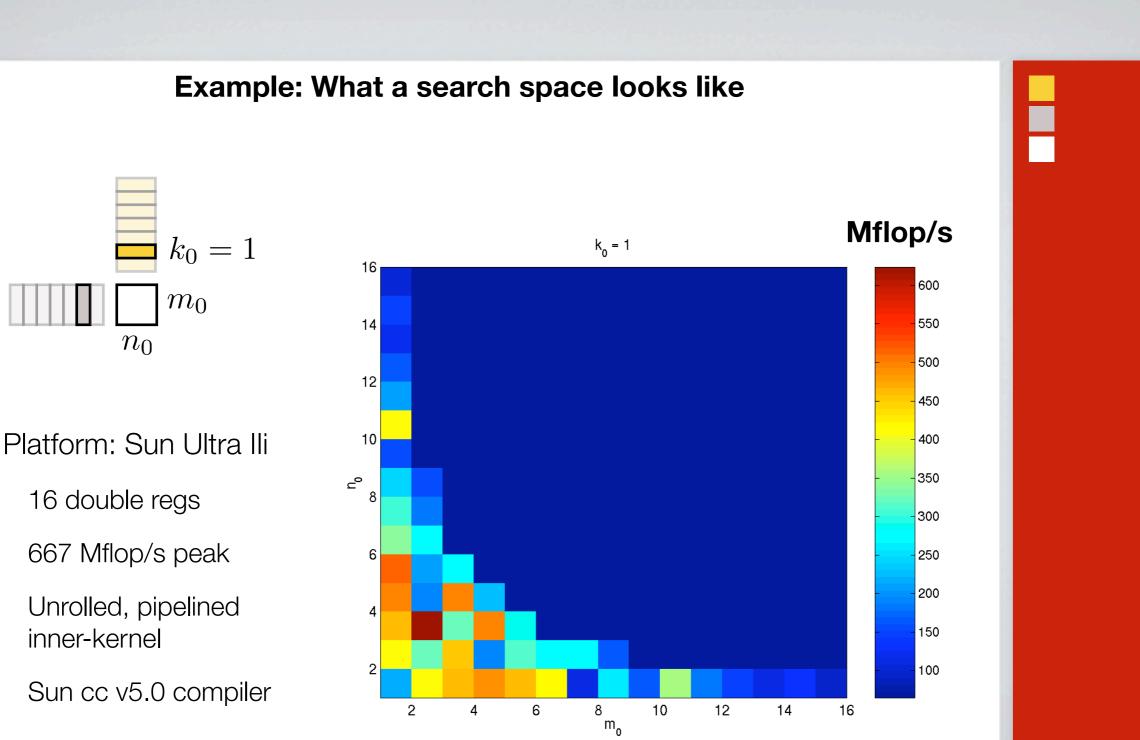


Automatic performance tuning, or "autotuning"

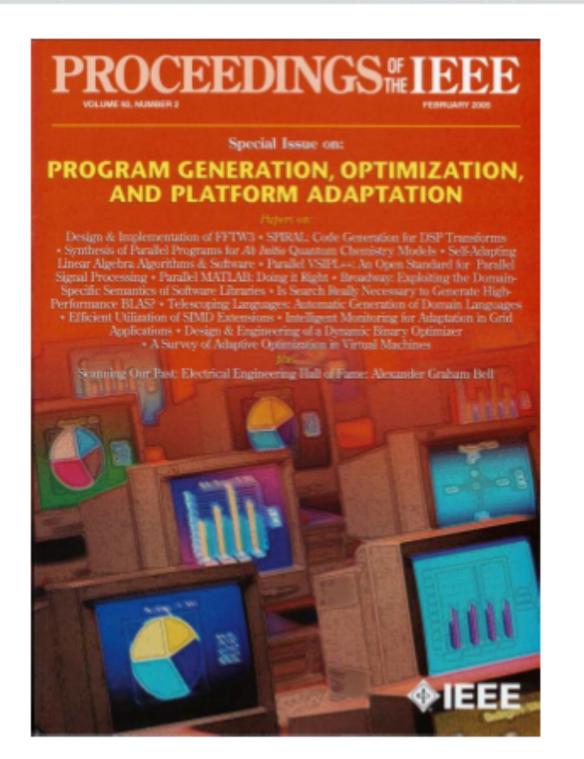
- Two-phase methodology for producing automatically tuned code
 - Given: Computational kernel or program; inputs; machine
 - Identify and generate a parameterized space of candidate implementations
 - Select the fastest one using empirical modeling and automated experiments
- "Autotuner" = System that implements this
 - Usually domain-specific (exception: "autotuning/iterative compilers")
 - Leverage back-end compiler for performance and portability

How an autotuner differs from a compiler (roughly)

	Compiler	Autotuner
Input	General-purpose source code	Specification
Code generation time	User responsive	Long, but amortized
Implementation selection	Static analysis; some run-time profiling/feedback	Automated empirical models and experiments



Source: PHiPAC Project at UC Berkeley (1997)



Proceedings of the IEEE special issue, Feb. 2005

Dense linear algebra

PHiPAC (1997)

- Portable High-Performance ANSI C [Bilmes, Asanovic, Chin, Demmel (1997)]
 - Coding guidelines: C as high-level assembly language
 - Code generator for multi-level cache- and register-blocked matrix multiply
 - Exhaustive search over all parameters
 - Began as class project which beat the vendor BLAS

PHiPAC coding guideline example: Removing false dependencies

Use local variables to remove false dependencies

```
a[i] = b[i] + c;
a[i+1] = b[i+1] * d;
```

float f1 = b[i];

a[i] = f1 + c;

a[i+1] = f2 * d;

float f2 = b[i+1];

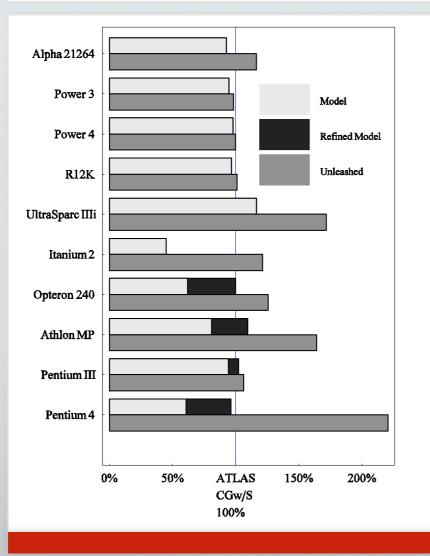
False read-after-write hazard between a[i] and b[i+1]

```
In C99, may declare a & b unaliased ("restrict" keyword)
```

ATLAS (1998)

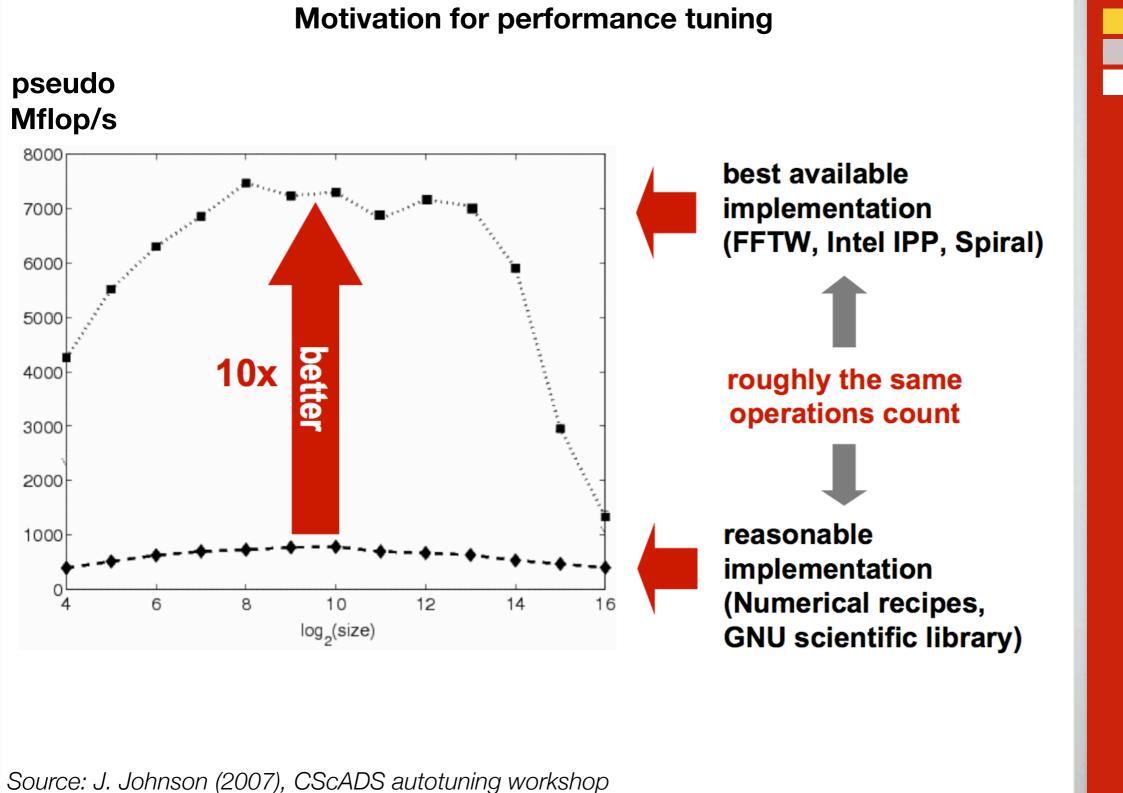
- "Automatically Tuned Linear Algebra Software" [R.C. Whaley and J. Dongarra (1998)]
 - Overcame PHiPAC shortcomings on x86 platforms
 - Copy optimization, prefetch, alternative schedulings
 - Extended to full BLAS, some LAPACK support (*e.g.*, LU)
- Code generator (written in C, output C w/ inline-assembly) with search
 - Copy optimization prunes much of PHiPAC's search space
 - Simple" line searches
 - See: iterative floating-point kernel optimizer (iFKO) work

Search vs. modeling



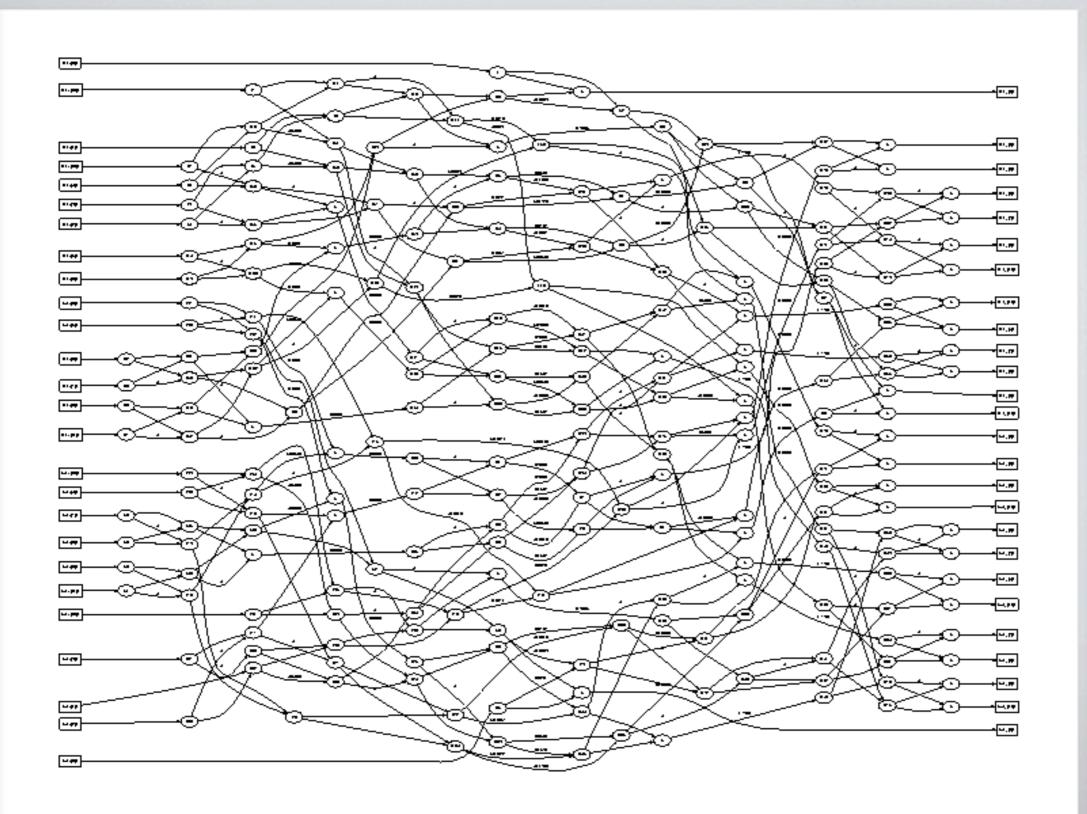
- Yotov, *et al.* "Is search really necessary to generate high-performance BLAS?"
- "Think globally, search locally"
 - Small gaps \Rightarrow local search
 - Large gaps \Rightarrow refine model
- "Unleashed" ⇒ hand-optimized plug-in kernels

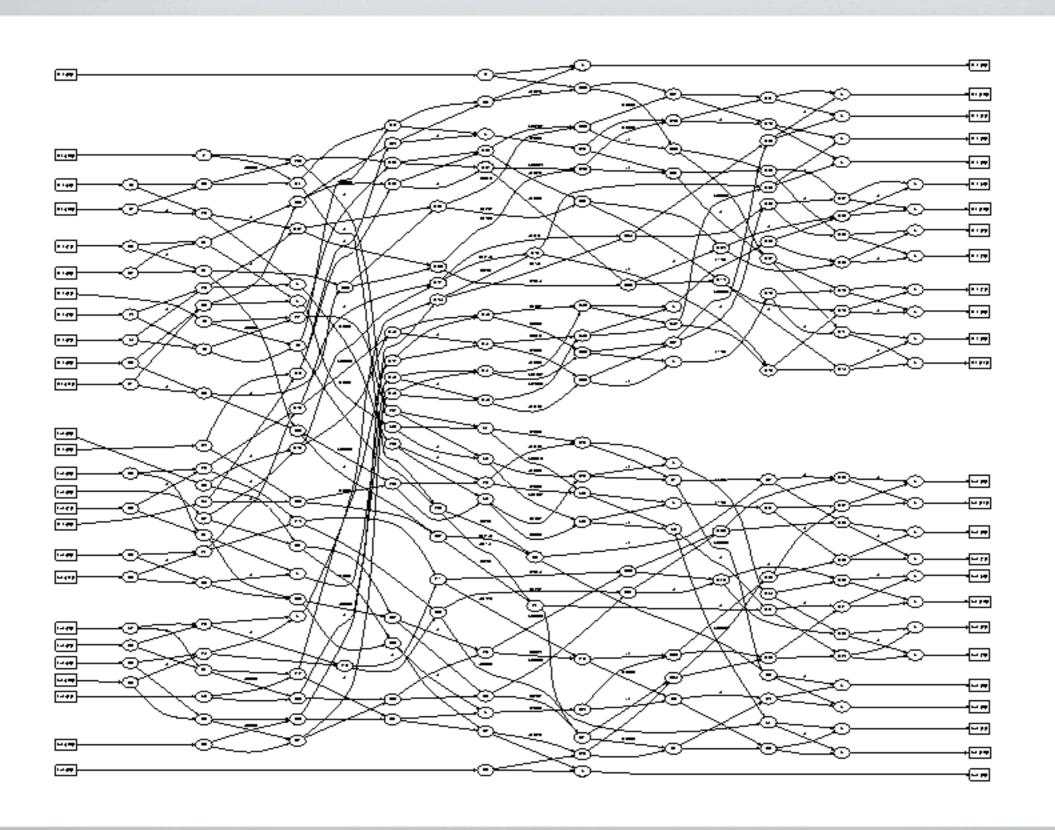
Signal processing



FFTW (1997)

- Fastest Fourier Transform in the West" [M. Frigo, S. Johnson (1997)]
- **Codelet**" generator (in OCaml)
 - Explicit represent a small fixed-size transform by its computation DAG
 - Deptimize DAG: Algebraic transformations, constant folding, "DAG transposition"
 - Schedule DAG cache-obliviously and output as C source code
- **Planner**: At run-time, determine which codelets to apply
- **Executor**: Perform FFT of a particular size using plan
- Efficient "plug-in" assembly kernels

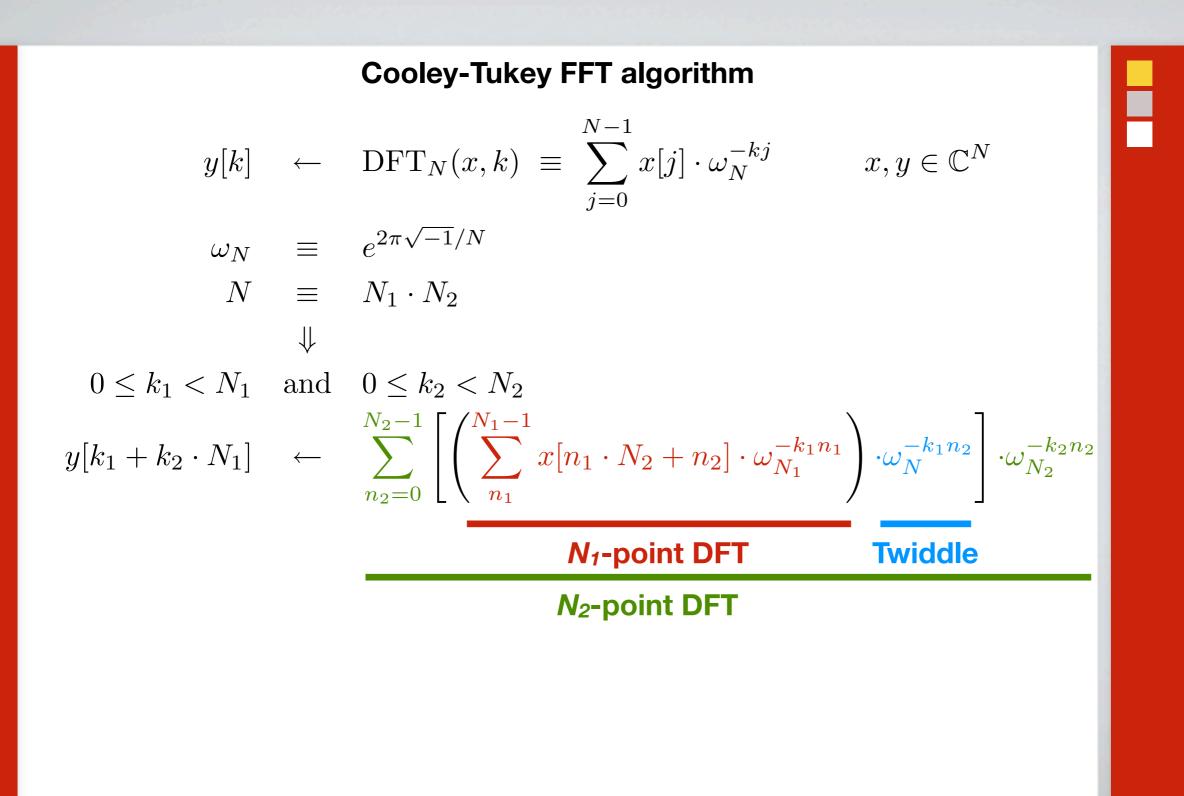




Cooley-Tukey FFT algorithm

$$y[k] \leftarrow \text{DFT}_N(x,k) \equiv \sum_{j=0}^{N-1} x[j] \cdot \omega_N^{-kj} \qquad x, y \in \mathbb{C}^N$$
$$\omega_N \equiv e^{2\pi\sqrt{-1}/N}$$
$$N \equiv N_1 \cdot N_2$$

B



Cooley-Tukey FFT algorithm: Encoding in the codelet generator

$$\begin{split} y[k] &\leftarrow \mathrm{DFT}_{N}(x,k) \equiv \sum_{j=0}^{N-1} x[j] \cdot \omega_{N}^{-kj} \qquad x,y \in \mathbb{C}^{N} \\ y[k_{1} + k_{2} \cdot N_{1}] &\leftarrow \sum_{n_{2}=0}^{N_{2}-1} \left[\left(\sum_{n_{1}}^{N_{1}-1} x[n_{1} \cdot N_{2} + n_{2}] \cdot \omega_{N_{1}}^{-k_{1}n_{1}} \right) \cdot \omega_{N}^{-k_{1}n_{2}} \right] \cdot \omega_{N_{2}}^{-k_{2}n_{2}} \\ \hline N_{1}-\mathrm{point} \, \mathrm{DFT} \qquad \mathsf{Twiddle} \\ \hline N_{2}-\mathrm{point} \, \mathrm{DFT} & \mathsf{Twiddle} \\ \hline \mathsf{N}_{2}-\mathrm{point} \, \mathrm{DFT} \\ \end{split}$$

$$\begin{split} \mathsf{let} \, \mathrm{dftgen}(N,x) &\equiv \, \mathsf{fun} \, k \to \dots \quad \# \, \mathrm{DFT}_{N}(x,k) \\ \mathsf{let} \, \mathrm{cooley_tukey}(N_{1},N_{2},x) &\equiv \\ \mathsf{let} \, \hat{x} &\equiv \, \mathsf{fun} \, n_{2}, n_{1} \to x(n_{2} + n_{1} \cdot N_{2}) \, \mathsf{in} \\ \mathsf{let} \, \mathbf{G}_{1} &\equiv \, \mathsf{fun} \, n_{2} \to \mathrm{dftgen}(N_{1}, \hat{x}(n_{2}, \ldots)) \, \mathsf{in} \\ \mathsf{let} \, \mathbf{W} &\equiv \, \mathsf{fun} \, k_{1}, n_{2} \to \mathbf{G}_{1}(n_{2},k_{1}) \cdot \omega_{N}^{-k_{1}n_{2}} \, \mathsf{in} \\ \mathsf{let} \, \mathbf{G}_{2} &\equiv \, \mathsf{fun} \, k_{1} \to \mathrm{dftgen}(N_{2}, \mathbf{W}(k_{1}, \ldots)) \\ \mathsf{in} \\ \mathsf{fun} \, k \to \mathbf{G}_{2}(k \, \mathrm{mod} \, N_{1}, k \, \mathrm{div} \, N_{1}) \end{split}$$

30

Planner phase

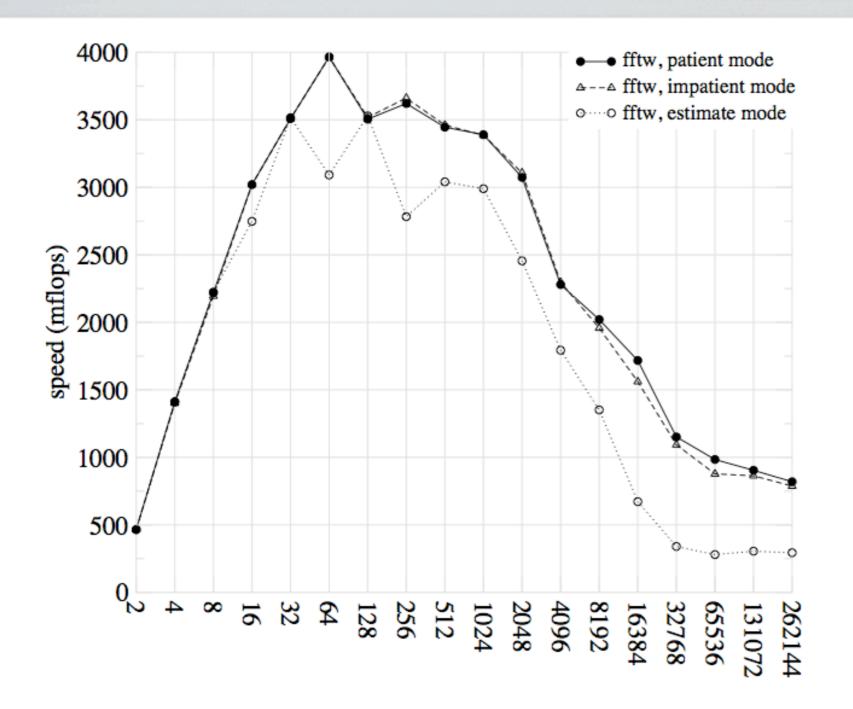
Assembles plan

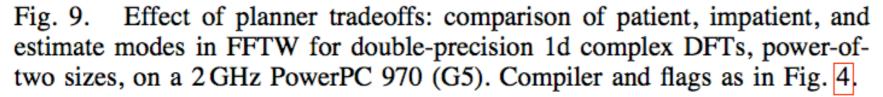
using dynamic

programming

Published in Proc. IEEE, vol. 93, no. 2, pp. 216-231 (2005).

Fig. 8. Example of FFTW's use. The user must first create a plan, which can be then used for many transforms of the same size.





-

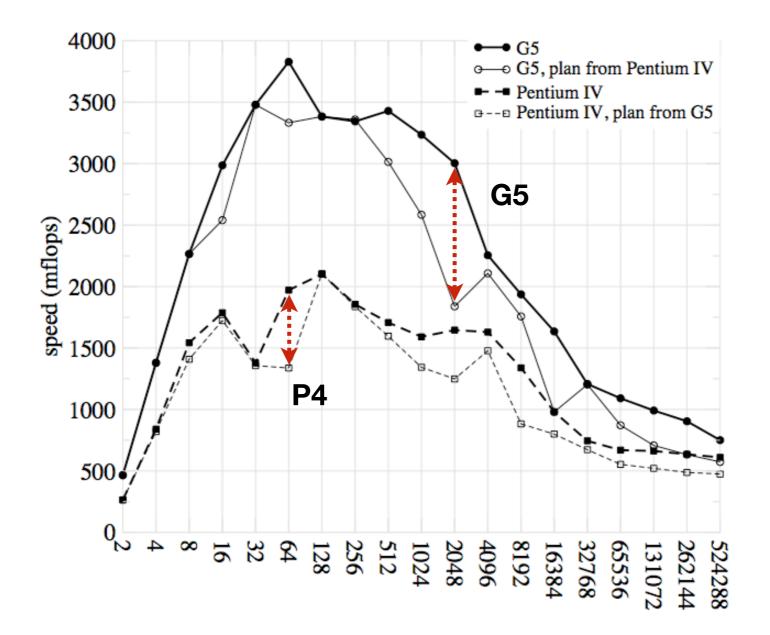


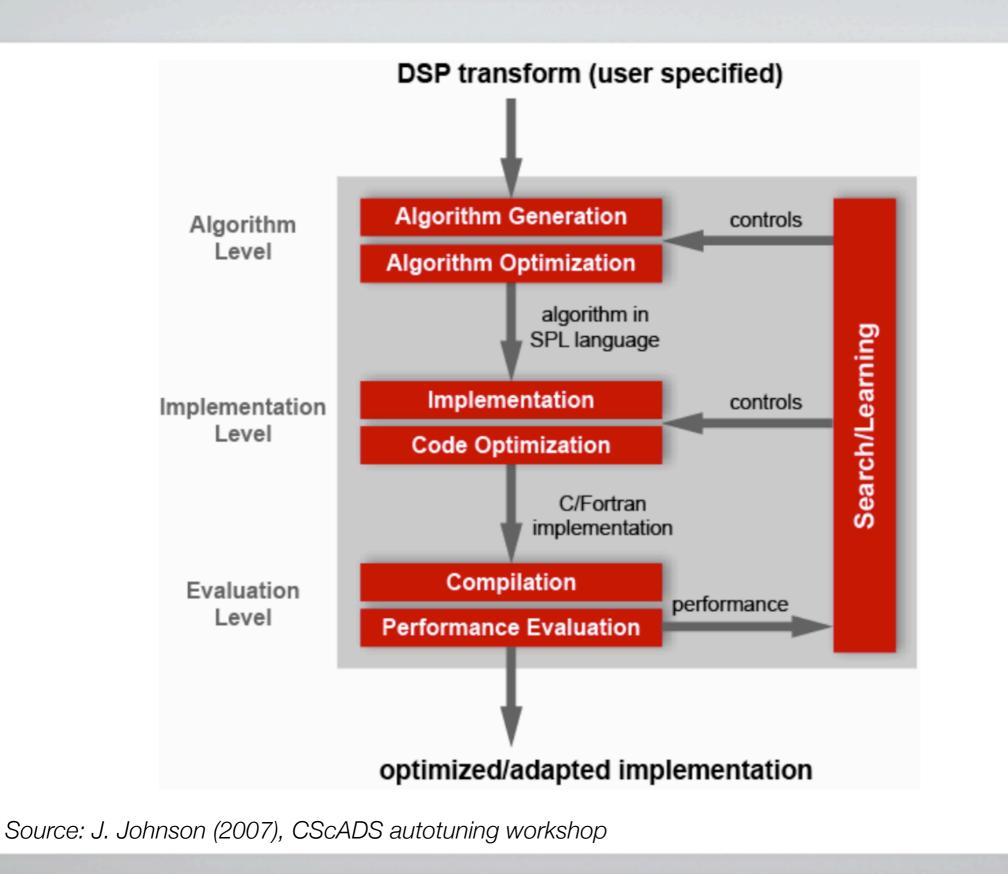
Fig. 10. Effects of tuning FFTW on one machine and running it on another. The graph shows the performance of one-dimensional DFTs on two machines: a 2 GHz PowerPC 970 (G5), and a 2.8 GHz Pentium IV. For each machine, we report both the speed of FFTW tuned to that machine and the speed tuned to the *other* machine.

-

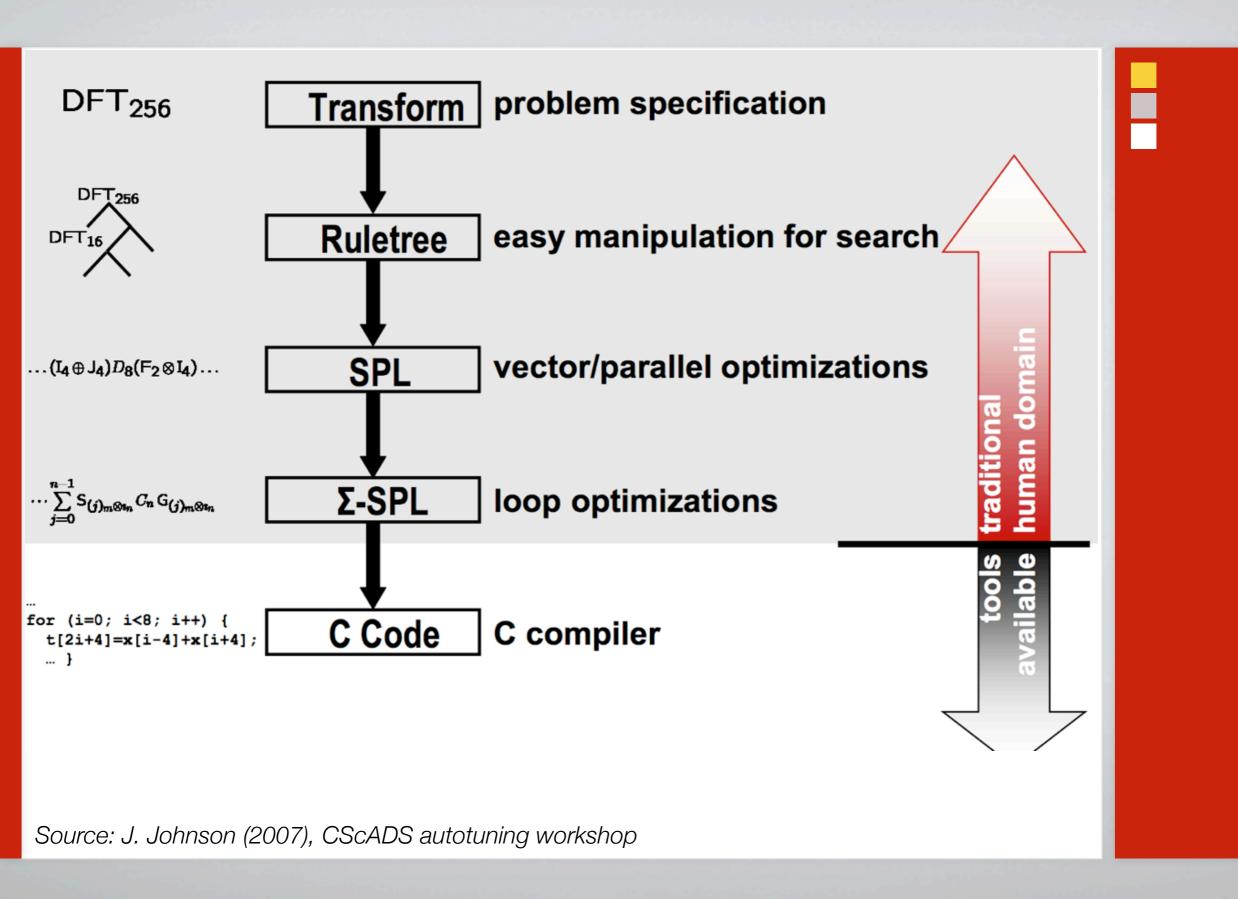
Software/Hardware Generation for DSP Algorithms

SPIRAL (1998)

- Code generator
 - Represent linear transformations as formulas
 - Symbolic algebra + rewrite engine transforms formulas
- Search using variety of techniques (more later)



-



High-level representations and rewrite rules

$$\mathbf{DFT}_{N} \equiv \left[\omega_{N}^{kl}\right]_{0 \le k, l < N}$$
$$\mathbf{DCT-2}_{N} \equiv \left[\cos\frac{(2l+1)k\pi}{2N}\right]_{0 \le k, l < N}$$

•

n

$$n = k \cdot m :$$

$$\implies \mathbf{DFT}_{n} \rightarrow (\mathbf{DFT}_{k} \otimes I_{m})T_{m}^{n}(I_{k} \otimes \mathbf{DFT}_{m})L_{k}^{n}$$

$$= k \cdot m, \ \gcd(k, m) = 1 :$$

$$\implies \mathbf{DFT}_{n} \rightarrow P_{n}(\mathbf{DFT}_{k} \otimes \mathbf{DFT}_{m})Q_{n}$$

$$p \text{ is prime :}$$

$$\implies \mathbf{DFT}_{p} \rightarrow R_{p}^{T}(I_{1} \oplus \mathbf{DFT}_{p-1}D_{p}(I_{1} \oplus \mathbf{DFT}_{p-1})R_{p}$$

$$\vdots$$

$$\mathbf{DFT}_{2} \rightarrow \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

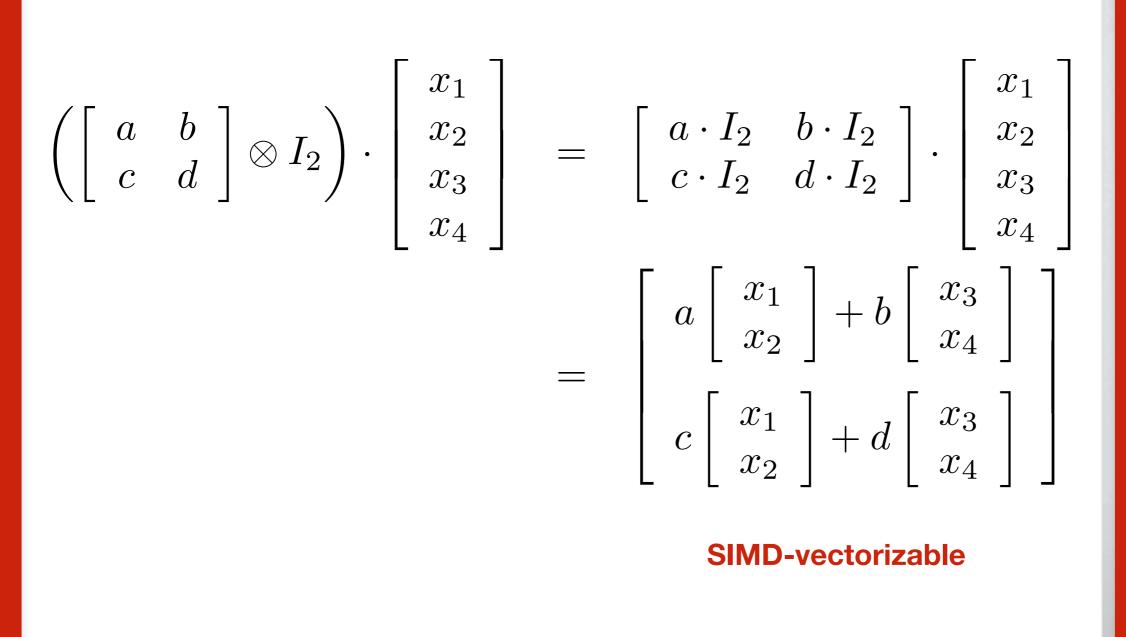
High-level representations expose parallelism

$$(I_{4} \otimes A) \cdot \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \end{bmatrix} = \begin{bmatrix} A \\ A \\ A \end{bmatrix} \cdot \begin{bmatrix} X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \end{bmatrix}$$
$$= \begin{bmatrix} AX_{1} \\ AX_{2} \\ AX_{3} \\ AX_{4} \end{bmatrix}$$
$$A \text{ applied 4 times independently}$$
$$A \text{ applied 4 times independently}$$
$$Processor 0$$
$$Processor 1$$
$$Processor 2$$
$$Processor 3$$

y

 \boldsymbol{x}

38



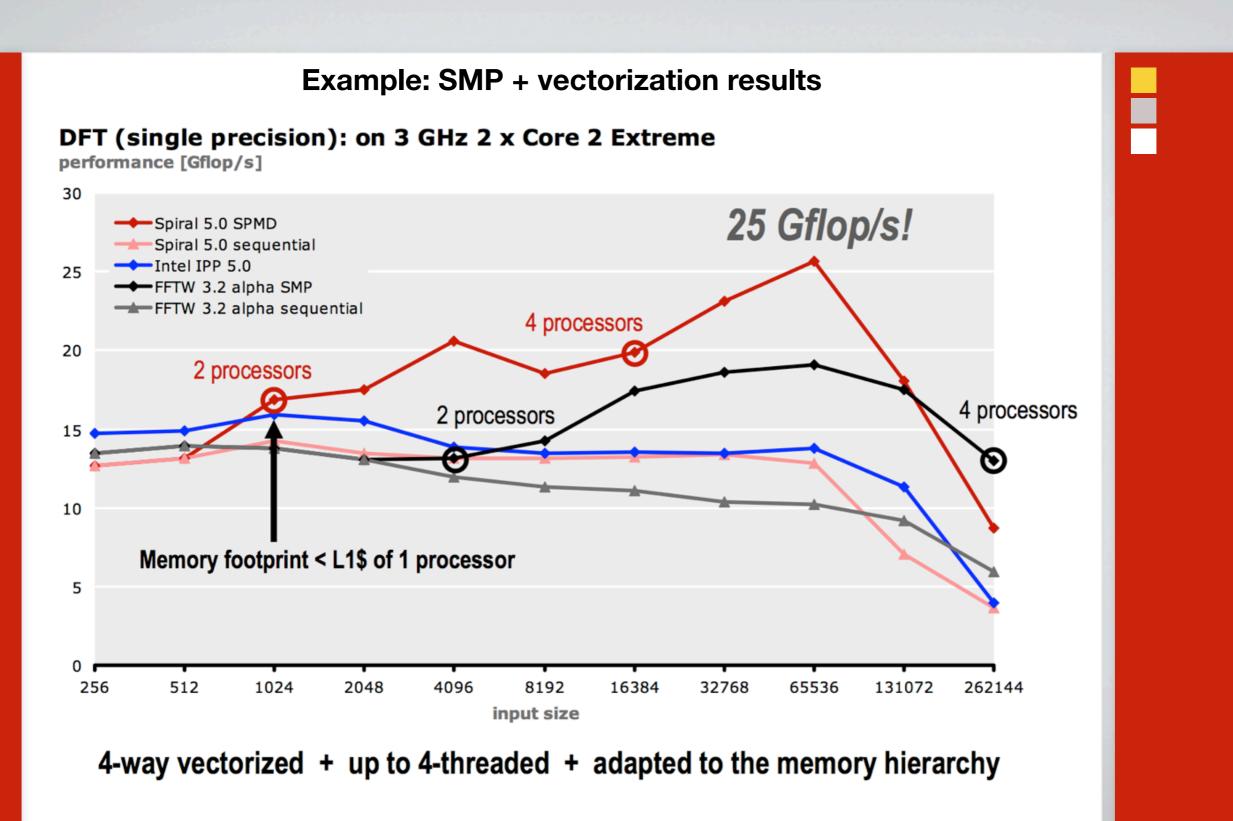
High-level representations expose parallelism

Search in SPIRAL

- Search over ruletrees, i.e., possible formula expansions
- Empirical search
 - Exhaustive

P

- Random
- Dynamic programming
- Evolutionary search
- Hill climbing
- Machine learning methods



Source: F. Franchetti (2007), CScADS autotuning workshop

Administrivia

Upcoming schedule changes

- Some adjustment of topics (TBD)
- Tu 3/11 Project proposals due
- Th 3/13 SIAM Parallel Processing (attendance encouraged)
- Tu 4/1 No class
- Th 4/3 Attend talk by Doug Post from DoD HPC Modernization Program

Homework 1: Parallel conjugate gradients

- Put name on write-up!
- Grading: 100 pts max
 - Correct implementation 50 pts
 - Evaluation 30 pts
 - Tested on two samples matrices 5
 - Implemented and tested on stencil 10
 - Explained" performance (e.g., per proc, load balance, comp. vs. comm) 15
 - Performance model 15 pts
 - Write-up "quality" 5 pts

Projects

Proposals due Tu 3/11

- Your goal should be to do something useful, interesting, and/or publishable!
 - Something you're already working on, suitably adapted for this course
 - Faculty-sponsored/mentored
 - Collaborations encouraged

My criteria for "approving" your project

- Relevant to this course:" Many themes, so think (and "do") broadly
 - Parallelism and architectures
 - Numerical algorithms
 - Programming models
 - Performance modeling/analysis

General styles of projects

- Theoretical: Prove something hard (high risk)
- Experimental:
 - Parallelize something
 - Take existing parallel program, and improve it using models & experiments
 - Evaluate algorithm, architecture, or programming model

Examples

- Anything of interest to a faculty member/project outside CoC
- Parallel sparse triple product ($R^*A^*R^T$, used in multigrid)
- Future FFT
- Out-of-core or I/O-intensive data analysis and algorithms
- Block iterative solvers (convergence & performance trade-offs)
- Sparse LU
- Data structures and algorithms (trees, graphs)
- Look at mixed-precision
- Discrete-event approaches to continuous systems simulation
- Automated performance analysis and modeling, tuning
- "Unconventional," but related
 - Distributed deadlock detection for MPI
 - UPC language extensions (dynamic block sizes)
 - Exact linear algebra

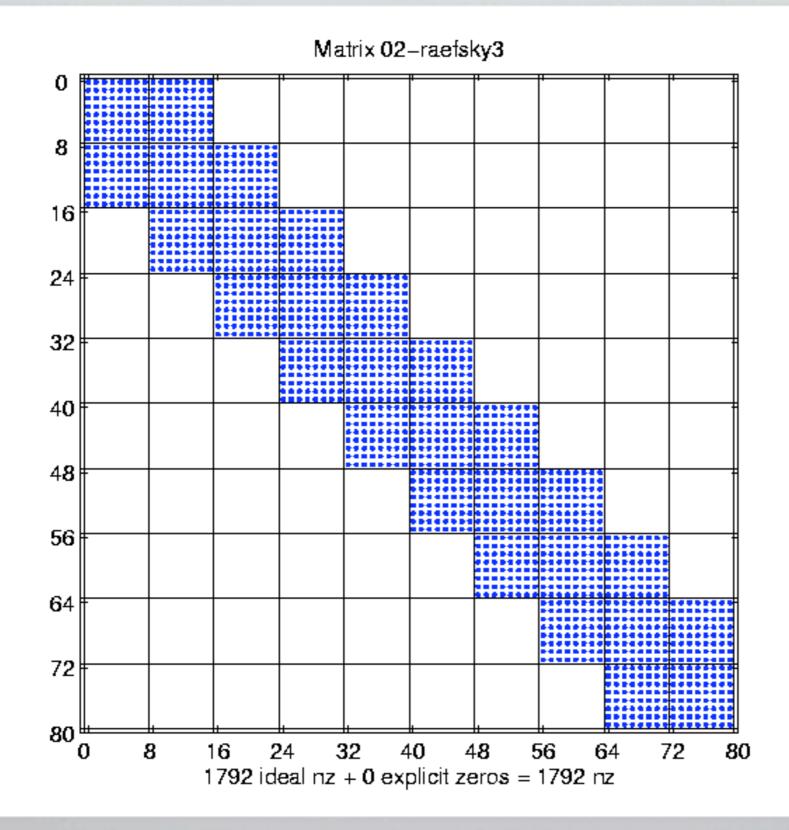
Sparse linear algebra

Key distinctions in autotuning work for sparse kernels

- Data structure transformations
 - Recall HW1
 - Sparse data structures require meta-data overhead
 - Sparse matrix-vector multiply (SpMV) is memory bound
 - Bandwidth limited \Rightarrow minimize data structure size
- Run-time tuning: Need lightweight techniques
- Extra flops pay off

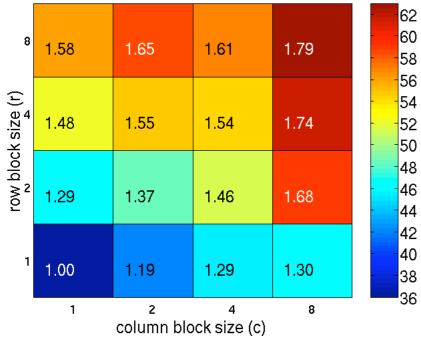
Sparsity (1998) and OSKI (2005)

- Berkeley projects (BeBOP group: Demmel & Yelick; Im, Vuduc, *et al.*)
 - PHIPAC \Rightarrow SPARSITY \Rightarrow OSKI
 - On-going: See multicore optimizations by Williams, *et al.*, in SC 2007
- Motivation: Sparse matrix-vector multiply (SpMV) \leq 10% peak or less
 - Indirect, irregular memory access
 - Low *q* vs. dense case
 - Depends on machine and matrix, possibly unknown until run-time

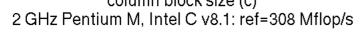


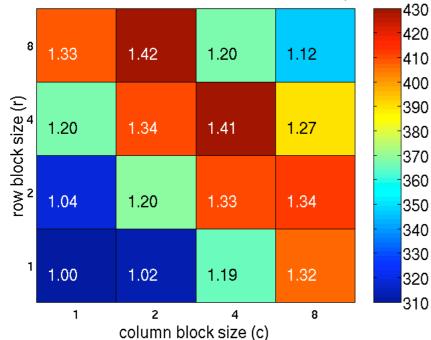
H

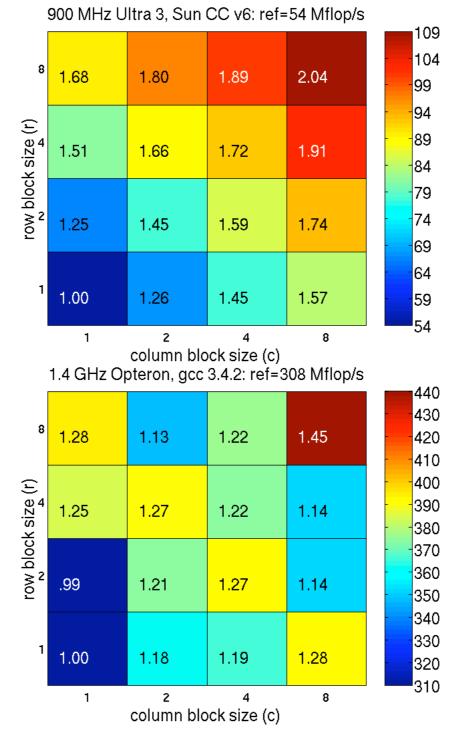
900 MHz Itanium 2, Intel C v8: ref=275 Mflop/s					
8	4.01	2.45	1.20	1.55	1120 1080 1030 980 930
row block size (r)	3.34	4.07	2.31	1.16	880 830 780 730
	1.91	2.52	2.54	2.23	680 630 580 530
	1.00	1.35	1.12	1.39	480 430 380 330
1 2 4 8 column block size (c)					



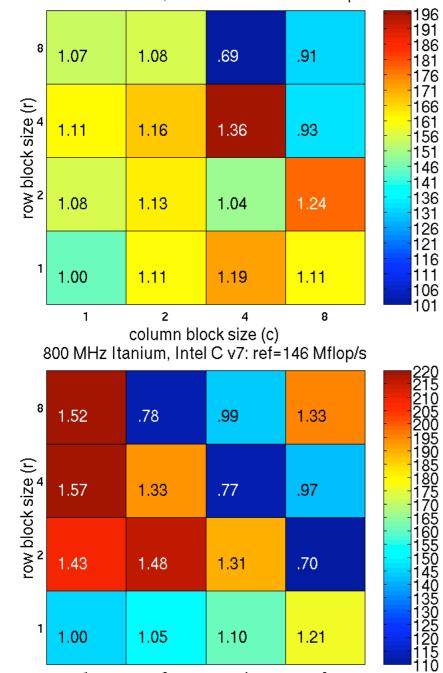
333 MHz Sun Ultra 2i, Sun C v6.0: ref=35 Mflop/s







i



.77

1.31

1.10

column block size (c)

4

.97

.70

1.21

8

row block size (r)

1

1.57

1.43

1.00

1

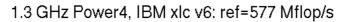
1.33

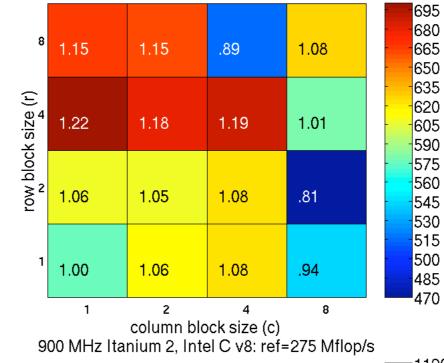
1.48

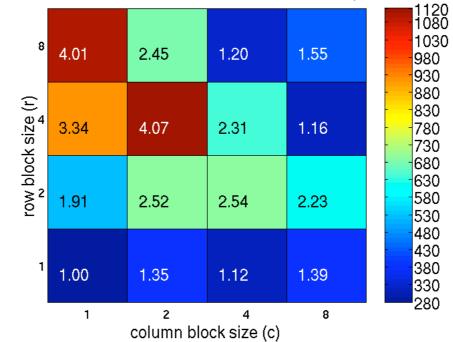
1.05

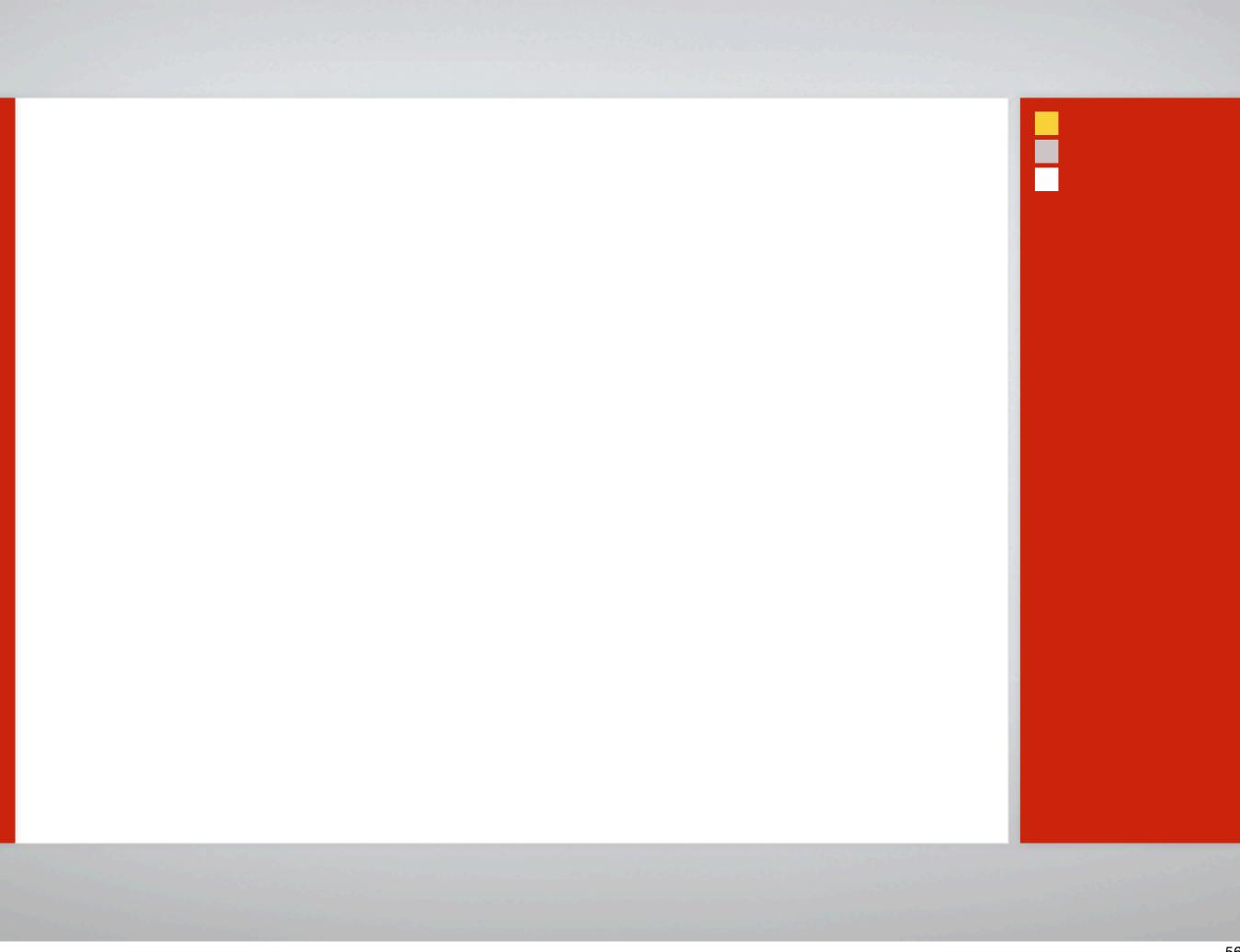
2

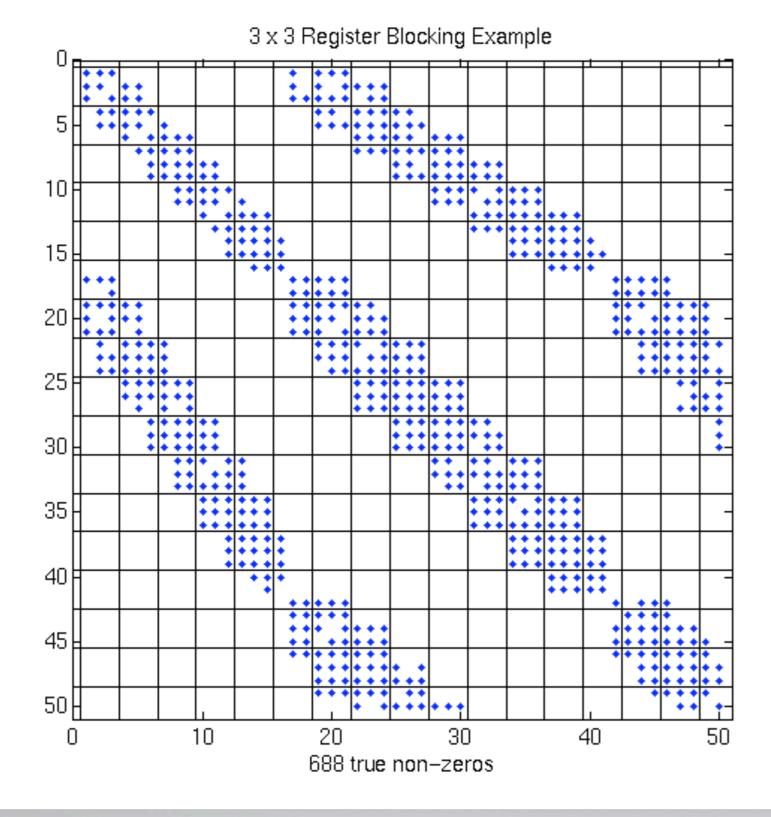
375 MHz Power3, IBM xlc v6: ref=145 Mflop/s



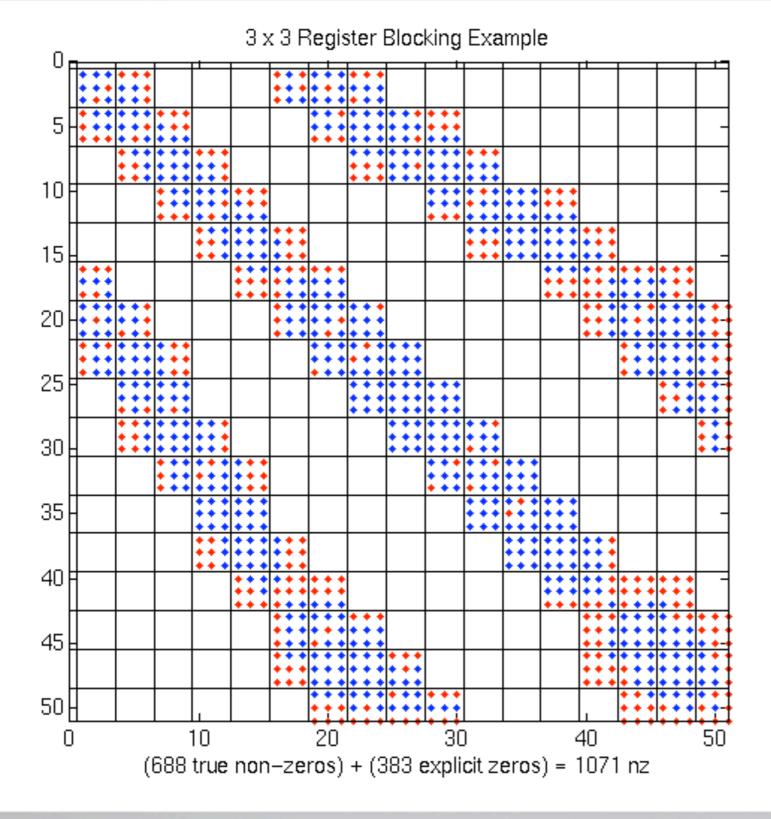








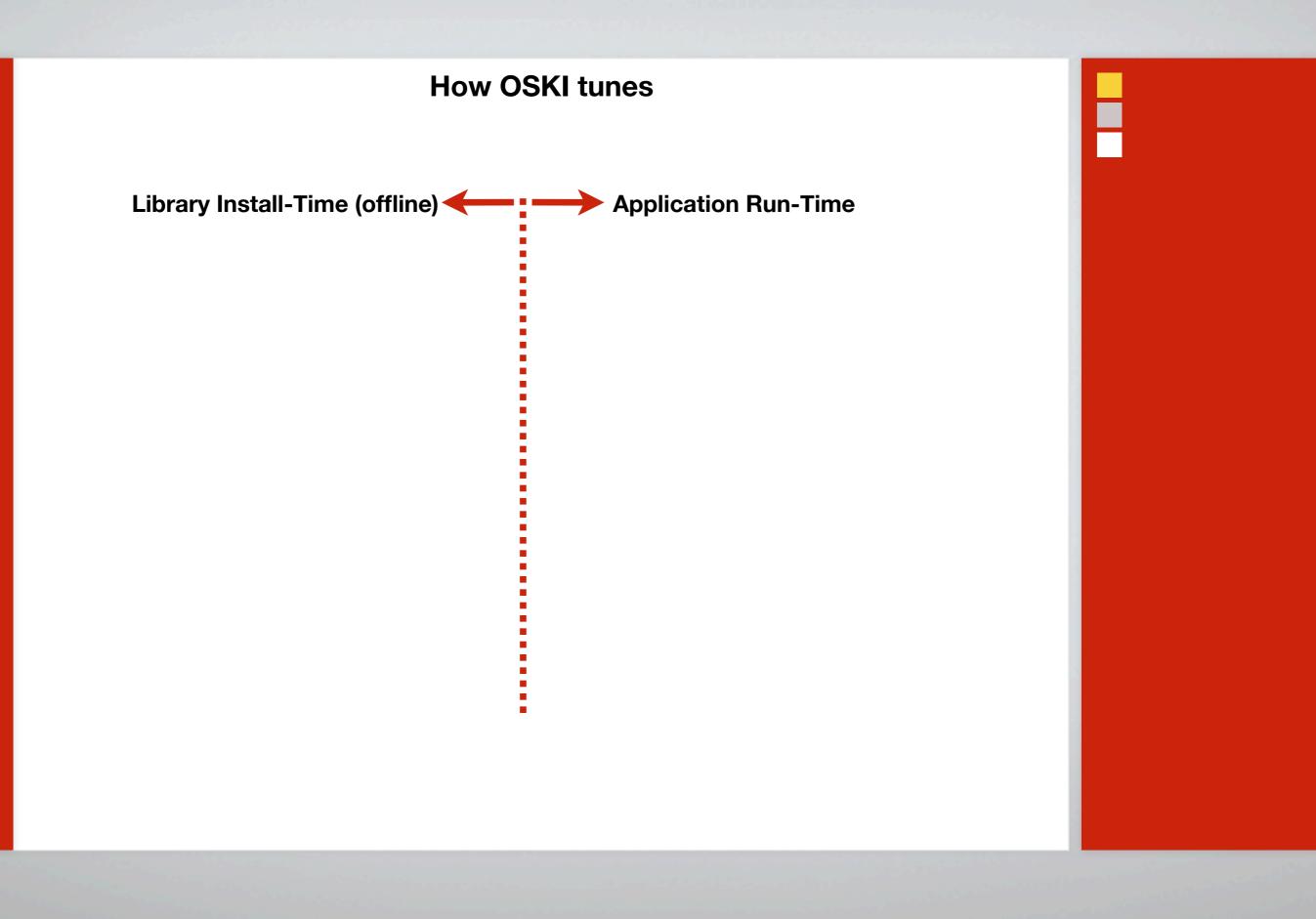
Ħ

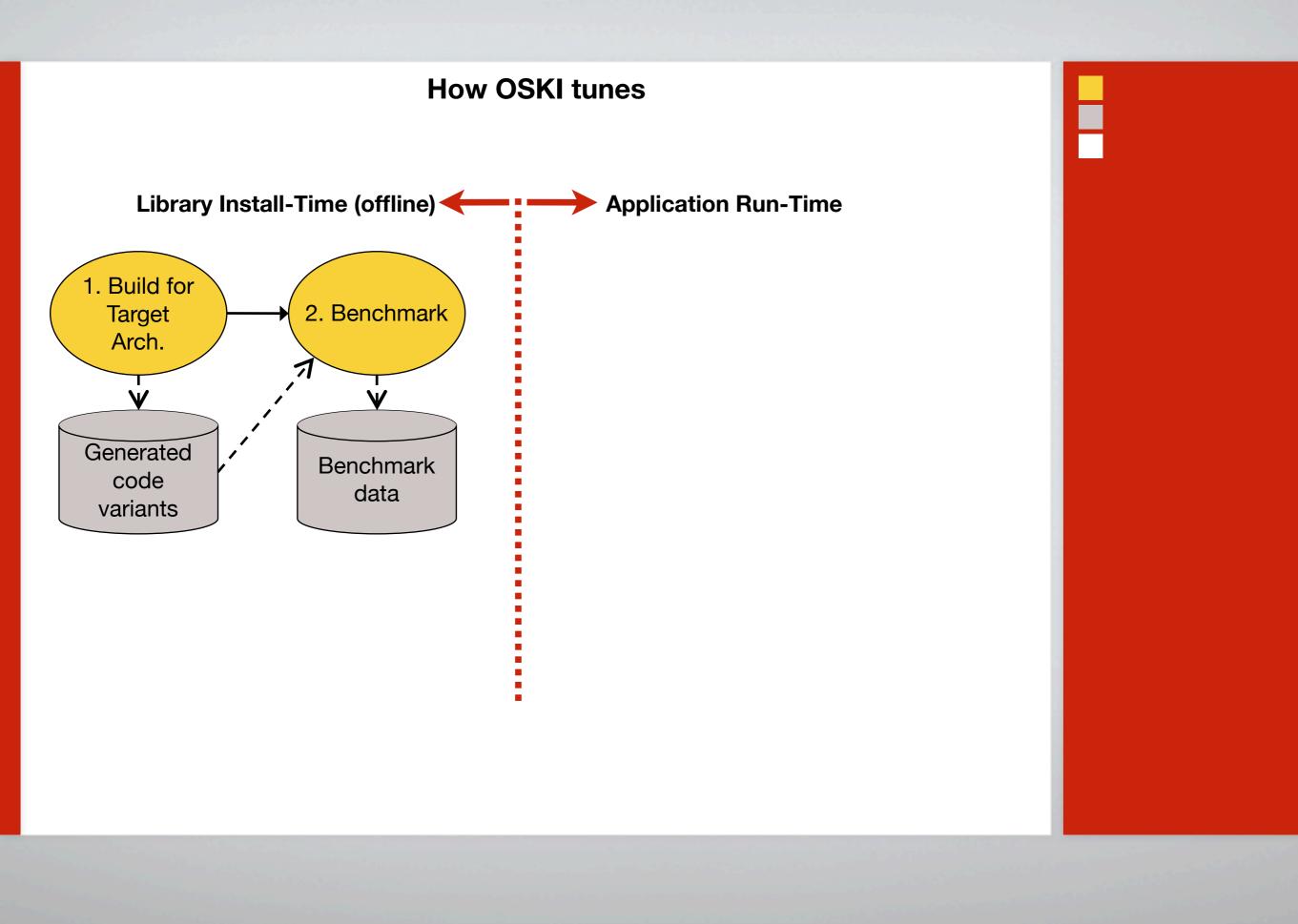


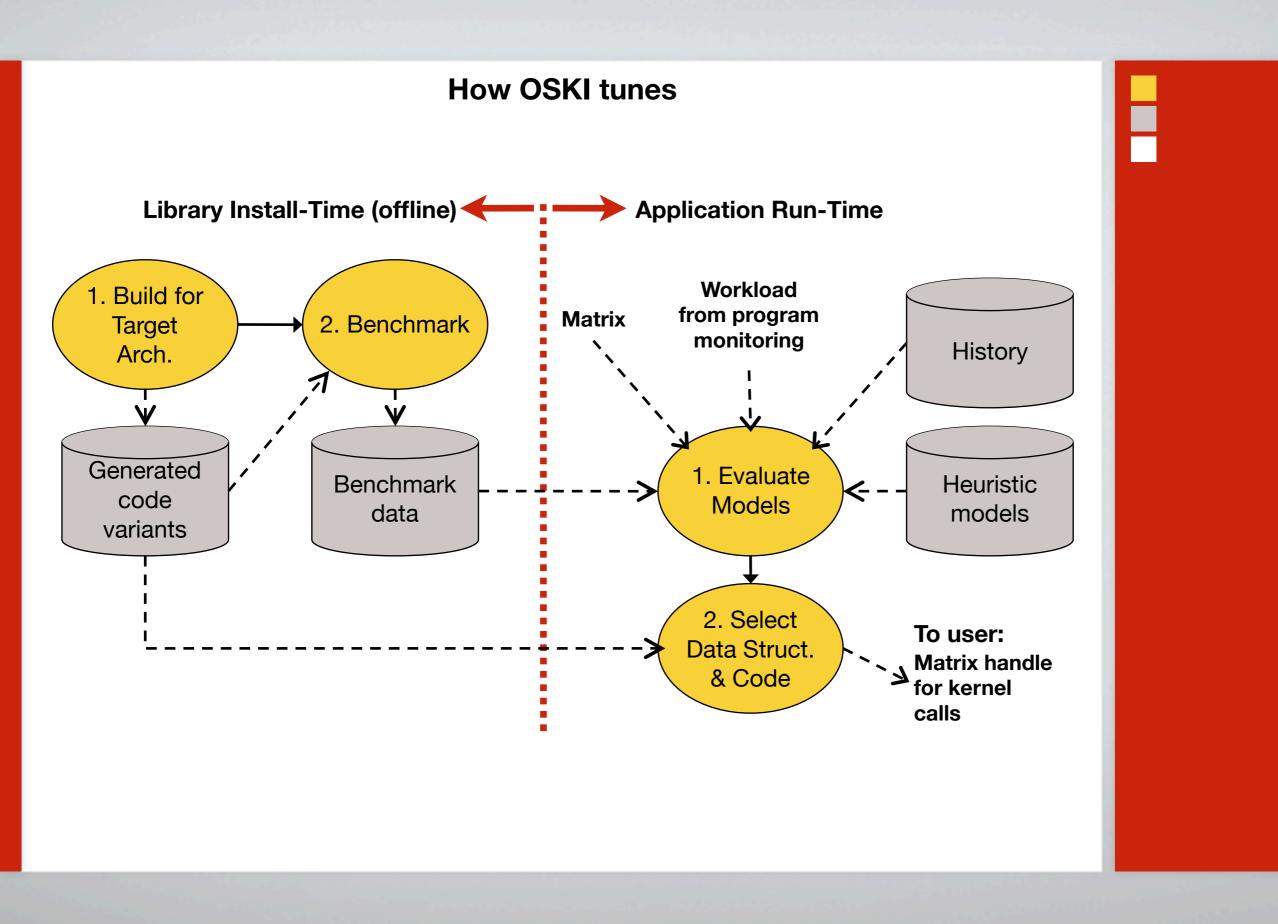
50% extra zeros

_

1.5x faster (2/3 time) on Pentium III







Heuristic model example: Selecting a block size

- Idea: Hybrid off-line/run-time model
 - **Offline benchmark**: Measure Mflops(r, c) on dense matrix in sparse format
 - **Run-time**: Sample matrix to quickly estimate Fill(r, c)
 - Run-time **model**: Choose r, c to maximize Mflops(r,c) / Fill(r, c)
 - Accurate in practice (selects r x c with performance within 10% of best)
- Run-time **cost**?
 - Roughly 40 SpMVs
 - Dominated by conversion (~80%)

Workload tuning

- Consider BiCG solver: Equal mix of A*x and A^T*y (independent)
 - 3×1 : A·x, AT·y = 1053, 343 Mflop/s \Rightarrow 517 Mflop/s
 - 3×3 : A·x, AT·y = 806, 826 Mflop/s \Rightarrow 816 Mflop/s
- Higher-level operation: Fused (A*x, A^T*y) kernel
 - 3×1:757 Mflop/s
 - 3×3: 1400 Mflop/s

Tensor Contraction Engine (TCE) for quantum chemistry

Tensor Contraction Engine (TCE)

- Application domain: Quantum chemistry
 - Electronic structure calculations
 - Dominant computation expressible as a "tensor contraction"
- TCE generates a complete parallel program from a high-level spec
 - Automates time-space trade-offs
 - Output
- S. Hirata (2002), and many others
- Following presentation taken from Proc. IEEE 2005 special issue

Motivation: Simplify program development

hbar[a,b,i,j] = sum[f[b,c] * t[i,j,a,c], c] - sum[f[k,c] * t[k,b] * t[i,j,a,c], k,c] + sum[f[a,c] * t[i,j,c,b], c] - sum[f[k,c] * t[k,a] * t[i,j,c,b], k,c] - sum[f[k,c] * t[i,k,a,b], k] - sum[f[k,c] * t[i,k,a,b], kt[j,c] * t[i,k,a,b], k,c] - sum[f[k,i] * t[j,k,b,a], k] - sum[f[k,c] * t[i,c] * t[j,k,b,a], k,c] + sum[t[i,c] * t[j,d] * v[a,b,c,d], c,d] + sum[t[i,j,c,d] * v[a,b,c,d], c,d] + sum[t[j,c] * v[a,b,i,c], sum[t[j,c] * v[a,bc] - sum[t[k,b] * v[a,k,i,j], k] + sum[t[i,c] * v[b,a,j,c], c] - sum[t[k,a] * v[b,k,j,i], k] - sum[t[k,d] * t[i,j,c,b] * v[k,a,c,d], k,c,d] - sum[t[i,c] * t[j,k,b,d] * v[k,a,c,d], k,c,d] - sum[t[j,c] * t[k,b] * v[k,a,c,i], k,c] + 2 * sum[t[j,k,b,c] * v[k,a,c,i], k,c] - sum[t[j,k,c,b] * v[k,a,c,i], k,c] - sum[t[i,c] * t[j,d] * t[k,b] * v[k,a,d,c], k,c,d] + 2 * sum[t[k,d] * t[i,j,c,b] * v[k,a,d,c], k,c,d]k,c,d] - sum[t[k,b] * t[i,j,c,d] * v[k,a,d,c], k,c,d] - sum[t[j,d] * t[i,k,c,b] * v[k,a,d,c], k,c,d] + 2 * sum[t[i,c] * t[j,k,b,d] * v[k,a,d,c], k,c,d] - sum[t[i,c] * t[j,k,d,b] * v[k,a,d,c], k,c,d] sum[t[j,k,b,c] * v[k,a,i,c], k,c] - sum[t[i,c] * t[k,b] * v[k,a,j,c], k,c] - sum[t[i,k,c,b] * v[k,a,j,c], k,c] - sum[t[i,c] * t[j,d] * t[k,a] * v[k,b,c,d], k,c,d] - sum[t[k,d] * t[i,j,a,c] * v[k,b,c,d], k,c] - sum[t[i,c] * t[k,b] * v[k,a,j,c], k,c] - sum[t[i,c] * t[k,b] * v[k,b,c], k,c] - sum[t[i,c] * t[k,b] * v[k,b], k,c] - sum[t[i,c] * t[k,b] * v[k,b], k,c] - sum[t[i,c] * t[k,b] * v[k,b] + sum[t[i,c] * t[k,b] * v[k,b], k,c] - sum[t[i,c] * t[k,b] * v[k,b], k,c] - sum[t[i,c] * t[k,b] * v[k,b], k,c] - sum[t[i,c] * t[k,b] + sum[t[i,c] * t[k,b] +k,c,d] - sum[t[k,a] * t[i,j,c,d] * v[k,b,c,d], k,c,d] + 2 * sum[t[j,d] * t[i,k,a,c] * v[k,b,c,d], k,c,d] - sum[t[j,d] * t[i,k,c,a] * v[k,b,c,d], k,c,d] - sum[t[i,c] * t[j,k,d,a] * v[k,b,c,d], k,c,d]- sum[t[i,c] * t[k,a] * v[k,b,c,j], k,c] + 2 * sum[t[i,k,a,c] * v[k,b,c,j], k,c] - sum[t[i,k,c,a] * v[k,b,c,j], k,c] + 2 * sum[t[k,d] * t[i,j,a,c] * v[k,b,d,c], k,c,d] - sum[t[j,d] * t[i,k,a,c] * v[k,b,c,j], k,c] + 2 * sum[t[k,d] * t[i,j,a,c] * v[k,b,d,c], k,c,d] - sum[t[j,d] * t[i,k,a,c] * v[k,b,c,j], k,c] + 2 * sum[t[k,d] * t[i,j,a,c] * v[k,b,d,c], k,c,d] - sum[t[j,d] * t[i,k,a,c] * v[k,b,c,j], k,c] + 2 * sum[t[k,d] * t[i,j,a,c] * v[k,b,d,c], k,c,d] - sum[t[j,d] * t[i,k,a,c] * v[k,b,c,j], k,c] + 2 * sum[t[k,d] * t[i,j,a,c] * v[k,b,d,c], k,c,d] - sum[t[j,d] * t[i,k,a,c] * v[k,b,c,j], k,c] + 2 * sum[t[k,d] * t[i,j,a,c] * v[k,b,d,c], k,c,d] - sum[t[k,d] * t[i,k,a,c] * v[k,b,c], k,c,d] - sum[t[k,d] * v[k,d,c], k,c,d] - sum[t[k,d] * v[k,d,c], k,c,d] - sum[t[k,d] * v[kv[k,b,d,c], k,c,d] - sum[t[j,c] * t[k,a] * v[k,b,i,c], k,c] - sum[t[j,k,c,a] * v[k,b,i,c], k,c] - sum[t[i,k,a,c] * v[k,b,j,c], k,c] + sum[t[i,c] * t[j,d] * t[k,a] * t[l,b] * v[k,l,c,d], k,l,c,d] - 2 * t[k,a] * t[k,a]sum[t[k,b] * t[l,d] * t[i,j,a,c] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[k,a] * t[l,d] * t[i,j,c,b] * v[k,l,c,d], k,l,c,d] + sum[t[k,a] * t[l,b] * t[i,j,c,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[j,c] * t[l,d] * t[i,j,c,d] + sum[t[k,a] * t[l,b] * t[i,j,c,d] + sum[t[k,a] * t[k,a] *t[i,k,a,b] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[j,d] * t[l,b] * t[i,k,a,c] * v[k,l,c,d], k,l,c,d] + sum[t[j,d] * t[l,b] * t[i,k,c,a] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,c] * t[l,d] * t[j,k,b,a] * v[k,l,c,d], k,l,c,d] + sum[t[j,d] * t[i,k,c,a] * v[k,l,c,d] + sum[t[j,d] * t[i,k,c,a] * v[k,d] + sum[t[j,d] *k,l,c,d] + sum[t[i,c] * t[l,a] * t[j,k,b,d] * v[k,l,c,d], k,l,c,d] + sum[t[i,c] * t[l,b] * t[j,k,d,a] * v[k,l,c,d] + sum[t[i,k,c,d] * t[j,l,b,a] * v[k,l,c,d], k,l,c,d] + 4 * sum[t[i,k,a,c] * t[i,k,a,c] * t[i,k,at[j,l,b,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,k,c,a] * t[j,l,b,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,k,a,b] * t[j,l,c,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,k,a,c] * t[j,l,d,b] * v[k,l,c,d], k,l,c,d]+ sum[t[i,k,c,a] * t[j,l,d,b] * v[k,l,c,d], k,l,c,d] + sum[t[i,c] * t[j,d] * t[k,l,a,b] * v[k,l,c,d], k,l,c,d] + sum[t[i,j,c,d] * t[k,l,a,b] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,j,c,b] * t[k,l,a,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,j,a,c] * t[k,l,b,d] * v[k,l,c,d], k,l,c,d] + sum[t[j,c] * t[k,b] * t[l,a] * v[k,l,c,i], k,l,c] + sum[t[l,c] * t[j,k,b,a] * v[k,l,c,i], k,l,c] - 2 * sum[t[l,a] * t[j,k,b,c] + sum[t[l,c] * t[j,k,b,a] * v[k,l,c,i], k,l,c] - 2 * sum[t[l,a] * t[j,k,b,c] + sum[t[l,c] * t[j,k,b,a] * v[k,l,c,i], k,l,c] - 2 * sum[t[l,a] * t[j,k,b,c] + sum[t[l,c] * t[j,k,b,a] * v[k,l,c,i], k,l,c] - 2 * sum[t[l,a] * t[j,k,b,c] + sum[t[l,c] * t[j,k,b,a] * v[k,l,c,i], k,l,c] - 2 * sum[t[l,a] * t[j,k,b,c] + sum[t[l,c] * t[j,k,b,a] * v[k,l,c,i], k,l,c] - 2 * sum[t[l,a] * t[j,k,b,c] + sum[t[l,a] * t[j,k,bv[k,l,c,i], k,l,c] + sum[t[l,a] * t[j,k,c,b] * v[k,l,c,i], k,l,c] - 2 * sum[t[k,c] * t[j,l,b,a] * v[k,l,c,i], k,l,c] + sum[t[k,a] * t[j,l,b,c] * v[k,l,c,i], k,l,c] + sum[t[k,b] * t[j,l,c,a] * v[k,l,c,i], k,l,c] + sum[t[k,b] * t[j,k,c,b] * v[k,k,c,b] + sum[t[k,b] * v[k,b] * v[k,b] + sum[t[k,b] * v[k,k,l,c] + sum[t[j,c] * t[l,k,a,b] * v[k,l,c,i], k,l,c] + sum[t[i,c] * t[k,a] * t[l,b] * v[k,l,c,j], k,l,c] + sum[t[l,c] * t[i,k,a,b] * v[k,l,c,j], k,l,c] - 2 * sum[t[l,b] * t[i,k,a,c] * v[k,l,c,j], k,l,c]+ sum[t[1,b] * t[i,k,c,a] * v[k,l,c,j], k,l,c] + sum[t[i,c] * t[k,l,a,b] * v[k,l,c,j], k,l,c] + sum[t[j,c] * t[l,d] * t[i,k,a,b] * v[k,l,d,c], k,l,c,d] + sum[t[j,d] * t[l,b] * t[i,k,a,c] * v[k,l,d,c], k,l,c]k,l,c,d] + sum[t[j,d] * t[l,a] * t[i,k,c,b] * v[k,l,d,c], k,l,c,d] - 2 * sum[t[i,k,c,d] * t[j,l,b,a] * v[k,l,d,c], k,l,c,d] - 2 * sum[t[i,k,a,c] * t[j,l,b,d] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,c,a] * t[i,k,c,b] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,c,a] * t[i,k,c,b] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,c,a] * t[i,k,c,b] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,c,b] * v[k,d,c], k,l,c t[j,l,b,d] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,a,b] * t[j,l,c,d] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,c,b] * t[j,l,d,a] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,a,c] * t[j,l,d,b] * v[k,l,d,c], k,l,c,d] + sum[t[k,a,c] * v[k,d,c], k,l,c,d] + sum[t[k,a,c], k,l,c,d] + sum[t[k,a,c], k,l,c,d] + sum[t* t[1,b] * v[k,l,i,j], k,l] + sum[t[k,l,a,b] * v[k,l,i,j], k,l] + sum[t[k,b] * t[1,d] * t[i,j,a,c] * v[l,k,c,d] + sum[t[k,a] * t[1,d] * t[i,j,c,b] * v[l,k,c,d] + sum[t[k,c,d] + su t[j,k,b,a] * v[l,k,c,d], k,l,c,d] - 2 * sum[t[i,c] * t[l,a] * t[j,k,b,d] * v[l,k,c,d], k,l,c,d] + sum[t[i,c] * t[l,a] * t[j,k,d,b] * v[l,k,c,d], k,l,c,d] + sum[t[i,j,c,b] * t[k,l,a,d] * v[l,k,c,d], k,l,c,d] + sum[t[i,c] * t[l,a] * t[j,k,b,d] * v[+ sum[t[i,j,a,c] * t[k,l,b,d] * v[l,k,c,d], k,l,c,d] - 2 * sum[t[l,c] * t[i,k,a,b] * v[l,k,c,j], k,l,c] + sum[t[l,b] * t[i,k,a,c] * v[l,k,c,j], k,l,c] + sum[t[l,a] * t[i,k,c,b] * v[l,k,c,j], k,l,c] + sum[t[l,b] * t[i,k,a,c] * v[l,k,c], k,l,c] + sum[t[l,b] * t[i,k,a,c] * v[l,k,c], k,l,c] + sum[t[l,b] * t[i,k,a,c] * v[l,k,c], k,l,c] + sum[t[l,b] * t[i,k v[a,b,i,j]

Source: Baumgartner, et al. (2005)

Naïvely, $\approx 4 \times N^{10}$ flops

$$S_{abij} = \sum_{c,d,e,f,k,l} A_{acik} \times B_{befl} \times C_{dfjk} \times D_{cdel}$$

$$\Downarrow$$

$$S_{abij} = \sum_{c,k} \left(\sum_{d,f} \left(\sum_{e,l} B_{befl} \times D_{cdel} \right) \times C_{dfjk} \right) \times A_{acik}$$

Assuming associativity and distributivity, $\approx 6 \times N^6$ flops, but also requires temporary storage.

Source: Baumgartner, et al. (2005)

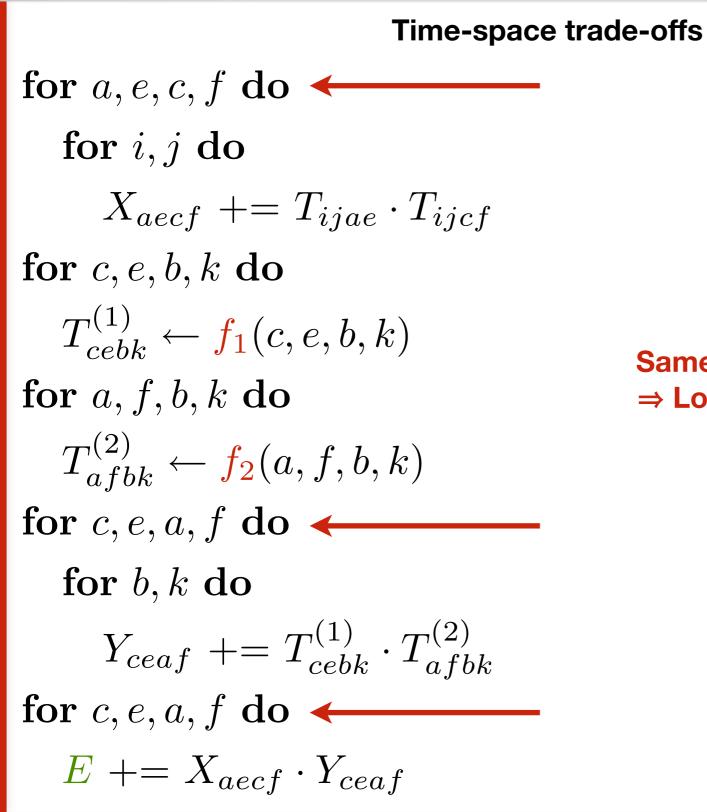
Operation and storage minimization *via* **loop fusion**

$$T_{bcdf}^{(1)} = \sum_{e,l} B_{befl} \times D_{cdel}$$
$$T_{bcjk}^{(2)} = \sum_{d,f} T_{bcdf}^{(1)} \times C_{dfjk}$$
$$S_{abij} = \sum_{c,k} T_{bcjk}^{(2)} \times A_{acik}$$

$$\begin{split} T1 &= T2 = S = 0\\ \text{for } b, c, d, e, f, l \text{ do} \\ T1[b, c, d, f] &+= B[b, e, f, l] \cdot D[c, d, e, l]\\ \text{for } b, c, d, f, j, k \text{ do} \\ T2[b, c, j, k] &+= T1[b, c, d, f] \cdot C[d, f, j, k]\\ \text{for } a, b, c, i, j, k \text{ do} \\ S[a, b, i, j] &+= T2[b, c, j, k] \cdot A[a, c, i, k] \end{split}$$

Operation and storage minimization *via* **loop fusion** $T_{bcdf}^{(1)} = \sum B_{befl} \times D_{cdel}$ e.l $T^{(2)}_{bcjk} = \sum T^{(1)}_{bcdf} \times C_{dfjk}$ $d_{\cdot}f$ $S_{abij} = \sum T^{(2)}_{bcjk} \times A_{acik}$ c.kS = 0for b, c do T1 = T2 = S = 0 $T1f \leftarrow 0, T2f \leftarrow 0$ for b, c, d, e, f, l do for d, f do $T1[b, c, d, f] += B[b, e, f, l] \cdot D[c, d, e, l]$ for e, l do for b, c, d, f, j, k do $T1f += B[b, e, f, l] \cdot D[c, d, e, l]$ $T2[b, c, j, k] + T1[b, c, d, f] \cdot C[d, f, j, k]$ for j, k do for a, b, c, i, j, k do $T2f[j,k] + T1f \cdot C[d, f, j, k]$ $S[a,b,i,j] + T2[b,c,j,k] \cdot A[a,c,i,k]$ for a, i, j, k do $S[a,b,i,j] + T2f[j,k] \cdot A[a,c,i,k]$

$$\label{eq:constraint} \begin{array}{l} \mbox{Time-space trade-offs} \\ \mbox{for } a, e, c, f \ \mbox{do} \\ \mbox{for } i, j \ \mbox{do} \\ X_{aecf} += T_{ijae} \cdot T_{ijcf} & \longleftarrow \ensuremath{"Contraction" of T over i, j} \\ \mbox{for } c, e, b, k \ \mbox{do} \\ T_{cebk}^{(1)} \leftarrow f_1(c, e, b, k) \\ \mbox{for } a, f, b, k \ \mbox{do} \\ T_{afbk}^{(2)} \leftarrow f_2(a, f, b, k) \\ \mbox{for } c, e, a, f \ \mbox{do} \\ Y_{ceaf} += T_{cebk}^{(1)} \cdot T_{afbk}^{(2)} & \longleftarrow \ensuremath{"Contraction" over $T^{(1)}$ and $T^{(2)}$} \\ \mbox{for } c, e, a, f \ \mbox{do} \\ Y_{ceaf} += T_{cebk}^{(1)} \cdot T_{afbk}^{(2)} & \longleftarrow \ensuremath{"Contraction" over $T^{(1)}$ and $T^{(2)}$} \\ \mbox{for } c, e, a, f \ \mbox{do} \\ E += X_{aecf} \cdot Y_{ceaf} \end{array}$$

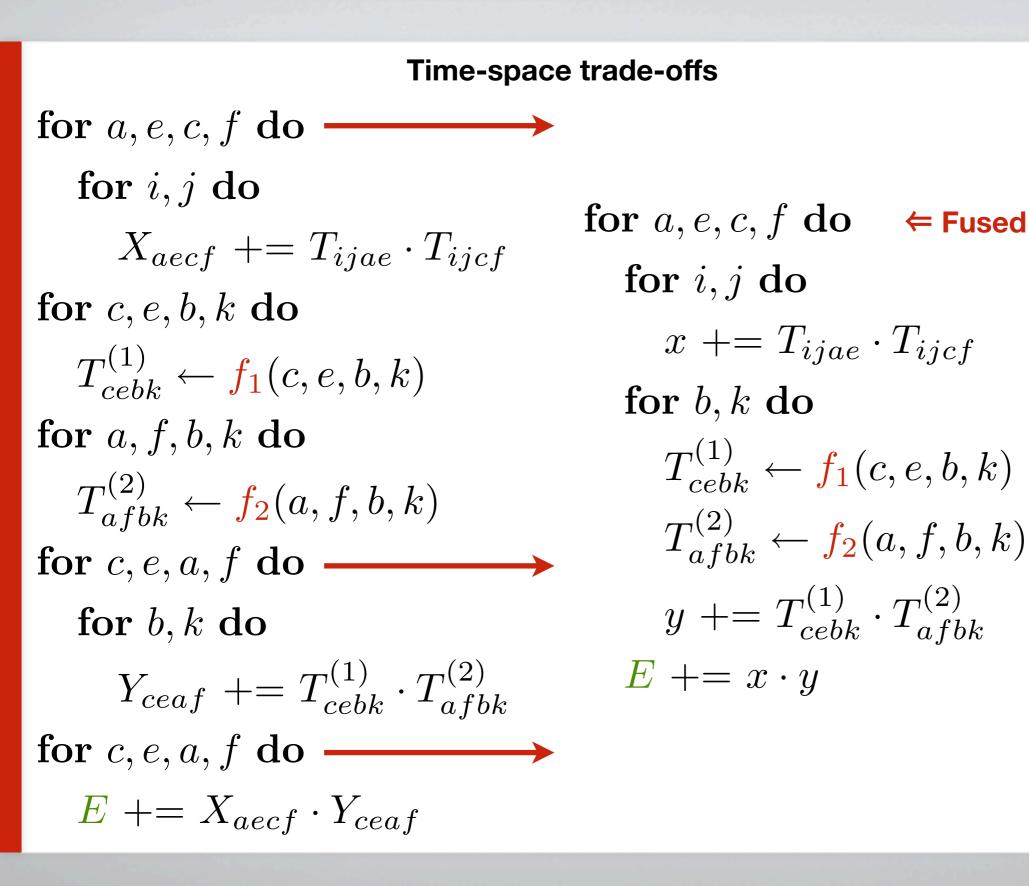


Max index of a-f: O(1000) i-k: O(100)

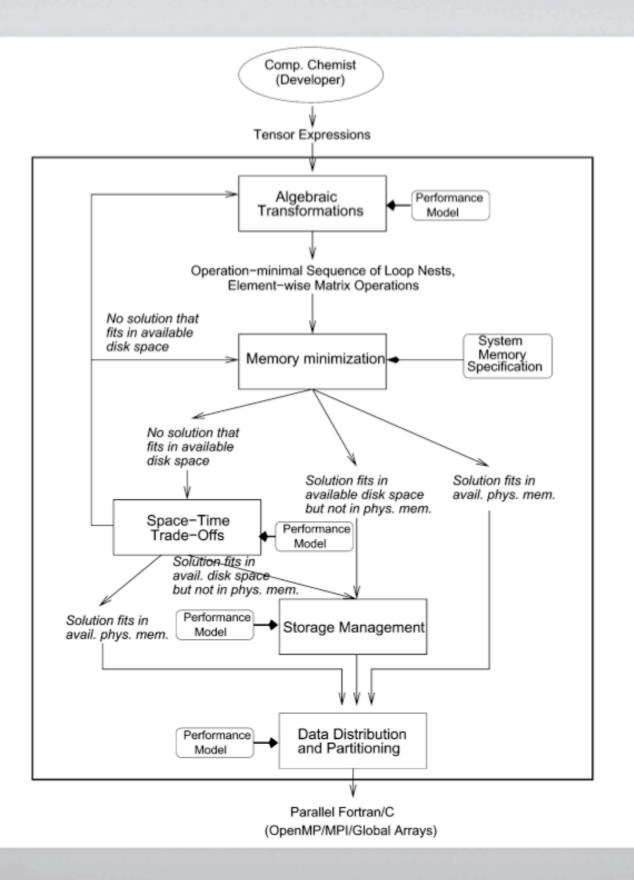
Н

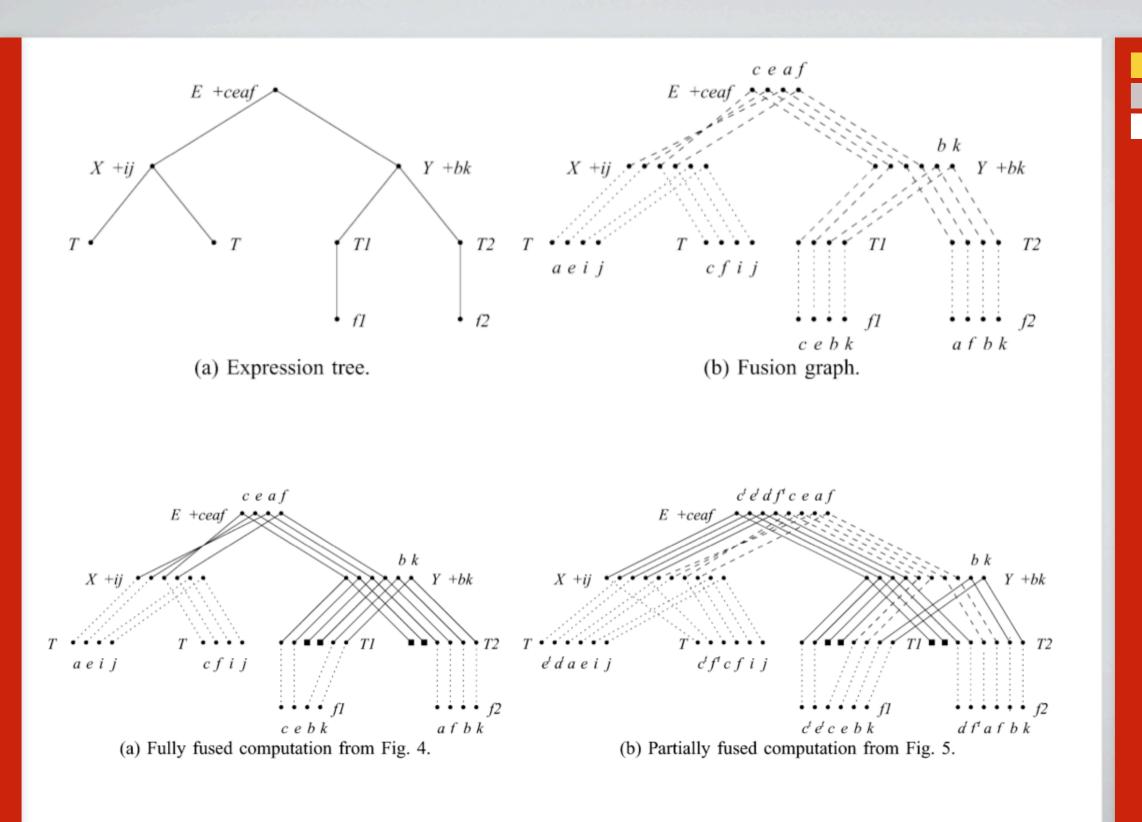
Same indices ⇒ Loop fusion candidates

Time-space trade-offs \rightarrow for a, e, c, f do for a, e, c, f do — for i, j do for i, j do $X_{aecf} += T_{ijae} \cdot T_{ijcf}$ $X_{aecf} += T_{ijae} \cdot T_{ijcf}$ for c, e, b, k do for a, c, e, f, b, k do $T_{cebk}^{(1)} \leftarrow f_1(c, e, b, k)$ $T_{cebk}^{(1)} \leftarrow f_1(c, e, b, k)$ Add extra for a, e, c, f, b, k do for a, f, b, k do flops $T_{a\,fbk}^{(2)} \leftarrow f_2(a, f, b, k)$ $T_{a\,fbk}^{(2)} \leftarrow f_2(a, f, b, k)$ for c, e, a, f do \longrightarrow for c, e, a, f do for b, k do for b, k do $Y_{ceaf} \mathrel{+}= T_{cebk}^{(1)} \cdot T_{afbk}^{(2)}$ $Y_{ceaf} \mathrel{+}= T_{cebk}^{(1)} \cdot T_{afbk}^{(2)}$ for c, e, a, f do \longrightarrow for c, e, a, f do $E \mathrel{+}= X_{aecf} \cdot Y_{ceaf}$ $E += X_{aecf} \cdot Y_{ceaf}$



for a^B, e^B, c^B, f^B do Tiled & partially fused for a, e, c, f do for a, e, c, f do for i, j do for i, j do $X_{aecf} += T_{ijae} \cdot T_{ijcf}$ $X_{aecf} += T_{ijae} \cdot T_{ijcf}$ for c, e, b, k do for b, k do $T_{cebk}^{(1)} \leftarrow f_1(c, e, b, k)$ for c, e do for a, f, b, k do $\hat{T}_{ce}^{(1)} \leftarrow f_1(c, e, b, k)$ $T_{afbk}^{(2)} \leftarrow f_2(a, f, b, k)$ for a, f do $\hat{T}_{af}^{(2)} \leftarrow f_2(a, f, b, k)$ for c, e, a, f do for b, k do **for** *c*, *e*, *a*, *f* **do** $Y_{ceaf} \mathrel{+}= T_{cebk}^{(1)} \cdot T_{afbk}^{(2)}$ $\hat{Y}_{ceaf} + = \hat{T}_{ce}^{(1)} \cdot \hat{T}_{af}^{(2)}$ for c, e, a, f do for c, e, a, f do $E += X_{aecf} \cdot Y_{ceaf}$ $E \mathrel{+}= \hat{X}_{aecf} \cdot \hat{Y}_{ceaf}$





Next time: Empirical compilers and tools

"In conclusion..."

Backup slides