
Autotuning (1/2):
Cache-oblivious algorithms

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.17] Tuesday, March 4, 2008

1



Today’s sources

CS 267 (Demmel & Yelick @ UCB; Spring 2007)

“An experimental comparison of cache-oblivious and cache-conscious programs?” by Yotov, 
et al. (SPAA 2007)

“The memory behavior of cache oblivious stencil computations,” by Frigo & Strumpen (2007)

Talks by Matteo Frigo and Kaushik Datta at CScADS Autotuning Workshop (2007)

Demaine’s @ MIT: http://courses.csail.mit.edu/6.897/spring03/scribe_notes
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Review:
Tuning matrix multiply
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Tiled MM on AMD Opteron 2.2 GHz (4.4 Gflop/s peak), 1 MB L2 cache

< 25% peak! We evidently still have a lot of work to do...
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Software pipelining: Interleave iterations to delay dependent instructions

i-4
i-3

i

i+1

Source: Clint Whaley’s code optimization course (UTSA Spring 2007)
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Dense Matrix Multiply Performance (Square n×n Operands) [800 MHz Intel Pentium III−mobile]

Vendor
Goto−BLAS
Reg/insn−level + cache tiling + copy
Cache tiling + copy opt.
Reference

Source: Vuduc, Demmel, Bilmes (IJHPCA 2004)
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Cache-oblivious matrix multiply
[Yotov, Roeder, Pingali, Gunnels, Gustavson (SPAA 2007)]
[Talk by M. Frigo at CScADS Autotuning Workshop 2007]
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Fast

Slow

Two-level memory hierarchy

M = capacity of cache (“fast”)

L = cache line size

Fully associative

Optimal replacement

Evicts most distant use

Sleator & Tarjan (CACM 1985): 
LRU, FIFO w/in constant of optimal 
w/ cache larger by constant factor

“Tall-cache:” M ≥ O(L2)

Limits: See Brodal & Fagerberg 
(STOC 2003)

When might this not hold?

Memory model for analyzing cache-oblivious algorithms
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A recursive algorithm for matrix-multiply

A11 A12

A21 A22

C11 C12

C21 C22

B11 B12

B21 B22
Divide all dimensions in half

Bilardi, et al.: Use Gray code ordering

Cost (flops) = T (n) =
{

8 · T (n
2 ) n > 1

O(1) n = 1

= O(n3)
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A recursive algorithm for matrix-multiply

A11 A12

A21 A22

C11 C12

C21 C22

B11 B12

B21 B22
Divide all dimensions in half

Bilardi, et al.: Use grey-code ordering

I/O Complexity?
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A recursive algorithm for matrix-multiply

A11 A12

A21 A22

C11 C12

C21 C22

B11 B12

B21 B22
Divide all dimensions in half

Bilardi, et al.: Use grey-code ordering

No. of misses, with tall-cache assumption:

Q(n) =

{
8 · Q(n

2 ) if n >
√

M
3

3n2

L otherwise

}
≤ Θ

(
n3

L
√

M

)
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Alternative: Divide longest dimension (Frigo, et al.)
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Relax tall-cache assumption using suitable layout

Source: Yotov, et al. (SPAA 2007) and Frigo, et al. (FOCS ’99)

Row-major Row-block-row Morton Z

No assumptionM ≥ Ω(L)Need tall cache
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Latency-centric vs. bandwidth-centric views of blocking

Time per flop ≈ 1 +
α

τ
· 1
b

α

τ
· 1
κ
≤ b ≤

√
M

3

⇐ Assume can perfectly overlap

    computation & communication

Peak flop/cy ≡ φ

Bandwidth, word/cy ≡ β

2n3

b
· 1
β

! 2n3 · 1
φ

=⇒ φ

β
≤ b
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FPU Registers L2 L3 MemoryL1

4*

≥2

2*

4

4

≥6
≈0.5

1 ≤ bR ≤ 6

1.33 ≤ β(R,L2) ≤ 4

1 ≤ bL2 ≤ 6

1.33 ≤ β(L2,L3) ≤ 4

8 ≤ bL3 ≤ 418

0.02 ≤ β(L3,Memory) ≤ 0.5
2 FMAs/cycle

Latency-centric vs. bandwidth-centric views of blocking

Example platform: Itanium 2

Consider L3 ←→ memory bandwidth

Φ = 4 flops / cycle; β = 0.5 words / cycle

L3 capacity = 4 MB (512 kwords)

Need 8 ≤ bL3 ≤ 418

Implications: Approximate cache-oblivious blocking works

Wide range of block sizes should be OK

If upper bound > 2*lower, divide-and-conquer generates block size in range

Source: Yotov, et al. (SPAA 2007)
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Cache-oblivious vs. cache-aware

Does cache-oblivious perform as well as cache-aware?

If not, what can be done?

Next: Summary of Yotov, et al., study (SPAA 2007)

Stole slides liberally
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All- vs. largest-dimension

Similar; assume “all-dim”
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Data structures

Morton-Z complicated and yields 
same or worse performance, so 
assume row-block-row
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Example 1: Ultra IIIi

1 GHz ⇒ 2 Gflop/s peak

Memory hierarchy

32 registers

L1 = 64 KB, 4-way

L2 = 1 MB, 4-way

Sun compiler
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• Iterative: triply nested loop
• Recursive: down to 1 x 1 x 1

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement
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Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

• Recursion down to NB
• Unfold completely below 

NB to get a basic block
• Micro-Kernel:

• The basic block compiled 
with native compiler

• Best performance for      
NB =12

• Compiler unable to use 
registers

• Unfolding reduces control 
overhead

• limited by I-cache
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• Recursion down to NB
• Unfold completely 

below NB to get a 
basic block

• Micro-Kernel
• Scalarize all array 

references in the 
basic block

• Compile with native 
compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compil

er
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• Recursion down to NB
• Unfold completely below NB to get a 

basic block
• Micro-Kernel

• Perform Belady’s register allocation on 
the basic block

• Schedule using BRILA compiler

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler
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• Recursion down to NB
• Unfold completely below NB to get a 

basic block
• Micro-Kernel

• Construct a preliminary schedule
• Perform Graph Coloring register 

allocation
• Schedule using BRILA compiler

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA
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• Recursion down to MU x NU 
x KU

• Micro-Kernel
• Completely unroll MU x NU 

x KU triply nested loop
• Construct a preliminary 

schedule
• Perform Graph Coloring 

register allocation
• Schedule using BRILA 

compiler

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA

Iterative
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Mini-Kernel

• Recursion down to NB
• Mini-Kernel

• NB x NB x NB triply 
nested loop

• Tiling for L1 cache
• Body is Micro-Kernel

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA

Iterative

28



Mini-Kernel

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA

Iterative

ATLAS CGw/S
ATLAS Unleashed

Specialized 
code generator 
with search
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Mini-Kernel

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA

Iterative

ATLAS CGw/S
ATLAS Unleashed
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Summary:
Engineering considerations

Need to cut-off recursion

Careful scheduling/tuning required at “leaves”

Yotov, et al., report that full-recursion + tuned micro-kernel ≤ 2/3 best

Open issues

Recursively-scheduled kernels worse than iteratively-schedule kernels — why?

Prefetching needed, but how best to apply in recursive case?
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Administrivia
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Upcoming schedule changes

Some adjustment of topics (TBD)

Tu 3/11 — Project proposals due

Th 3/13 — SIAM Parallel Processing (attendance encouraged)

Tu 4/1 — No class

Th 4/3 — Attend talk by Doug Post from DoD HPC Modernization Program
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Homework 1:
Parallel conjugate gradients

Put name on write-up!

Grading: 100 pts max

Correct implementation — 50 pts

Evaluation — 30 pts

Tested on two samples matrices — 5

Implemented and tested on stencil — 10

“Explained” performance (e.g., per proc, load balance, comp. vs. comm) — 15

Performance model — 15 pts

Write-up “quality” — 5 pts
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Projects

Proposals due Tu 3/11

Your goal should be to do something useful, interesting, and/or publishable!

Something you’re already working on, suitably adapted for this course

Faculty-sponsored/mentored

Collaborations encouraged
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My criteria for “approving” your 
project

“Relevant to this course:” Many themes, so think (and “do”) broadly

Parallelism and architectures

Numerical algorithms

Programming models

Performance modeling/analysis
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General styles of projects

Theoretical: Prove something hard (high risk)

Experimental:

Parallelize something

Take existing parallel program, and improve it using models & experiments

Evaluate algorithm, architecture, or programming model
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Anything of interest to a faculty member/project outside CoC

Parallel sparse triple product (R*A*RT, used in multigrid)

Future FFT

Out-of-core or I/O-intensive data analysis and algorithms

Block iterative solvers (convergence & performance trade-offs)

Sparse LU

Data structures and algorithms (trees, graphs)

Look at mixed-precision

Discrete-event approaches to continuous systems simulation

Automated performance analysis and modeling, tuning

“Unconventional,” but related

Distributed deadlock detection for MPI

UPC language extensions (dynamic block sizes)

Exact linear algebra

Examples
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Switch: M. Frigo’s talk slides
from CScADS 2007 autotuning 
workshop
http://cscads.rice.edu/workshops/july2007/autotune-workshop-07
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Cache-oblivious stencil 
computations
[Frigo and Strumpen (ICS 2005)]
[Datta, et al. (2007)]
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Cache-oblivious stencil computation
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w < 2×h:

42



t=0
x=0 16

5

8

Cache-oblivious stencil computation

w < 2×h ⇒ “Time-cut”:

10
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Cache-oblivious stencil computation
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w ≥ 2×h:
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Cache-oblivious stencil computation

10

w ≥ 2×h ⇒ “Space-cut”:

45



t=0
x=0 16

5

8

Cache-oblivious stencil computation

10

w ≥ 2×h ⇒ “Space-cut”:
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Cache-oblivious stencil computation

10

w < 2×h ⇒ “Time-cut”:
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Cache-oblivious stencil computation
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Theorem [Frigo & Strumpen (ICS 2005)]:
d = dimension ⇒

Q(n, t; d) = O

(
nd · t

M
1
d

)
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Source: Datta, et al. (2007)

Cache-oblivious stencil computation:
Fewer misses but more time
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Cache-conscious algorithm
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Cache-conscious algorithm

Source: Datta, et al. (2007)
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“In conclusion…”
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Backup slides
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