
Autotuning (1/2):
Cache-oblivious algorithms

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.17] Tuesday, March 4, 2008

1



Today’s sources

CS 267 (Demmel & Yelick @ UCB; Spring 2007)

“An experimental comparison of cache-oblivious and cache-conscious programs?” by Yotov, 
et al. (SPAA 2007)

“The memory behavior of cache oblivious stencil computations,” by Frigo & Strumpen (2007)

Talks by Matteo Frigo and Kaushik Datta at CScADS Autotuning Workshop (2007)

Demaine’s @ MIT: http://courses.csail.mit.edu/6.897/spring03/scribe_notes

2

http://courses.csail.mit.edu/6.897/spring03/scribe_notes
http://courses.csail.mit.edu/6.897/spring03/scribe_notes


Review:
Tuning matrix multiply

3



Tiled MM on AMD Opteron 2.2 GHz (4.4 Gflop/s peak), 1 MB L2 cache

< 25% peak! We evidently still have a lot of work to do...

4



Fast

Slow

Registers

L1

TLB

L2

Main

5



C

B

A

6



Software pipelining: Interleave iterations to delay dependent instructions

i-4
i-3

i

i+1

Source: Clint Whaley’s code optimization course (UTSA Spring 2007)

m3;

7



0

0.0625

0.125

0.1875

0.25

0.3125

0.375

0.4375

0.5

0.5625

0.625

0.6875

0.75

0.8125

0.875

Fraction of P
eak

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

matrix dimension (n)

P
er

fo
rm

an
ce

 (M
flo

p/
s)

Dense Matrix Multiply Performance (Square n×n Operands) [800 MHz Intel Pentium III−mobile]

Vendor
Goto−BLAS
Reg/insn−level + cache tiling + copy
Cache tiling + copy opt.
Reference

Source: Vuduc, Demmel, Bilmes (IJHPCA 2004)

8



Cache-oblivious matrix multiply
[Yotov, Roeder, Pingali, Gunnels, Gustavson (SPAA 2007)]
[Talk by M. Frigo at CScADS Autotuning Workshop 2007]

9



Fast

Slow

Two-level memory hierarchy

M = capacity of cache (“fast”)

L = cache line size

Fully associative

Optimal replacement

Evicts most distant use

Sleator & Tarjan (CACM 1985): 
LRU, FIFO w/in constant of optimal 
w/ cache larger by constant factor

“Tall-cache:” M ≥ O(L2)

Limits: See Brodal & Fagerberg 
(STOC 2003)

When might this not hold?

Memory model for analyzing cache-oblivious algorithms

10



A recursive algorithm for matrix-multiply

A11 A12

A21 A22

C11 C12

C21 C22

B11 B12

B21 B22
Divide all dimensions in half

Bilardi, et al.: Use Gray code ordering

Cost (flops) = T (n) =
{

8 · T (n
2 ) n > 1

O(1) n = 1

= O(n3)

11



A recursive algorithm for matrix-multiply

A11 A12

A21 A22

C11 C12

C21 C22

B11 B12

B21 B22
Divide all dimensions in half

Bilardi, et al.: Use grey-code ordering

I/O Complexity?

12



A recursive algorithm for matrix-multiply

A11 A12

A21 A22

C11 C12

C21 C22

B11 B12

B21 B22
Divide all dimensions in half

Bilardi, et al.: Use grey-code ordering

No. of misses, with tall-cache assumption:

Q(n) =

{
8 · Q(n

2 ) if n >
√

M
3

3n2

L otherwise

}
≤ Θ

(
n3

L
√

M

)

13



Alternative: Divide longest dimension (Frigo, et al.)

C1

C2

A1

A2

m

k

Bk

n

CA1 A2

k

B2

B1
k

n

B2B1k

n

k

A C1 C2

Cache misses Q(m, k, n) ≤






Θ
(

mk+kn+mn
L

)
if mk + kn + mn ≤ αM

2Q
(

m
2 , k, n

)
if m ≥ k, n

2Q(m, k
2 , n) if k > m, k ≥ n

2Q(m, k, n
2 ) otherwise

= Θ
(

mkn

L
√

M

)

14



Relax tall-cache assumption using suitable layout

Source: Yotov, et al. (SPAA 2007) and Frigo, et al. (FOCS ’99)

Row-major Row-block-row Morton Z

No assumptionM ≥ Ω(L)Need tall cache

15



I

K

K

J

Latency-centric vs. bandwidth-centric views of blocking

Time per flop ≈ 1 +
α

τ
· 1
b

α

τ
· 1
κ
≤ b ≤

√
M

3

⇐ Assume can perfectly overlap

    computation & communication

Peak flop/cy ≡ φ

Bandwidth, word/cy ≡ β

2n3

b
· 1
β

! 2n3 · 1
φ

=⇒ φ

β
≤ b

16



FPU Registers L2 L3 MemoryL1

4*

≥2

2*

4

4

≥6
≈0.5

1 ≤ bR ≤ 6

1.33 ≤ β(R,L2) ≤ 4

1 ≤ bL2 ≤ 6

1.33 ≤ β(L2,L3) ≤ 4

8 ≤ bL3 ≤ 418

0.02 ≤ β(L3,Memory) ≤ 0.5
2 FMAs/cycle

Latency-centric vs. bandwidth-centric views of blocking

Example platform: Itanium 2

Consider L3 ←→ memory bandwidth

Φ = 4 flops / cycle; β = 0.5 words / cycle

L3 capacity = 4 MB (512 kwords)

Need 8 ≤ bL3 ≤ 418

Implications: Approximate cache-oblivious blocking works

Wide range of block sizes should be OK

If upper bound > 2*lower, divide-and-conquer generates block size in range

Source: Yotov, et al. (SPAA 2007)

17



Cache-oblivious vs. cache-aware

Does cache-oblivious perform as well as cache-aware?

If not, what can be done?

Next: Summary of Yotov, et al., study (SPAA 2007)

Stole slides liberally

18



All- vs. largest-dimension

Similar; assume “all-dim”

19



Data structures

Morton-Z complicated and yields 
same or worse performance, so 
assume row-block-row

20



Example 1: Ultra IIIi

1 GHz ⇒ 2 Gflop/s peak

Memory hierarchy

32 registers

L1 = 64 KB, 4-way

L2 = 1 MB, 4-way

Sun compiler

21



• Iterative: triply nested loop
• Recursive: down to 1 x 1 x 1

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement

22



Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

• Recursion down to NB
• Unfold completely below 

NB to get a basic block
• Micro-Kernel:

• The basic block compiled 
with native compiler

• Best performance for      
NB =12

• Compiler unable to use 
registers

• Unfolding reduces control 
overhead

• limited by I-cache

23



• Recursion down to NB
• Unfold completely 

below NB to get a 
basic block

• Micro-Kernel
• Scalarize all array 

references in the 
basic block

• Compile with native 
compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compil

er

24



• Recursion down to NB
• Unfold completely below NB to get a 

basic block
• Micro-Kernel

• Perform Belady’s register allocation on 
the basic block

• Schedule using BRILA compiler

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

25



• Recursion down to NB
• Unfold completely below NB to get a 

basic block
• Micro-Kernel

• Construct a preliminary schedule
• Perform Graph Coloring register 

allocation
• Schedule using BRILA compiler

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA

26



• Recursion down to MU x NU 
x KU

• Micro-Kernel
• Completely unroll MU x NU 

x KU triply nested loop
• Construct a preliminary 

schedule
• Perform Graph Coloring 

register allocation
• Schedule using BRILA 

compiler

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA

Iterative

27



Mini-Kernel

• Recursion down to NB
• Mini-Kernel

• NB x NB x NB triply 
nested loop

• Tiling for L1 cache
• Body is Micro-Kernel

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA

Iterative

28



Mini-Kernel

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA

Iterative

ATLAS CGw/S
ATLAS Unleashed

Specialized 
code generator 
with search

29



Mini-Kernel

Belady /
BRILA

Scalarized /
Compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None /
Compiler

Coloring /
BRILA

Iterative

ATLAS CGw/S
ATLAS Unleashed

30



Summary:
Engineering considerations

Need to cut-off recursion

Careful scheduling/tuning required at “leaves”

Yotov, et al., report that full-recursion + tuned micro-kernel ≤ 2/3 best

Open issues

Recursively-scheduled kernels worse than iteratively-schedule kernels — why?

Prefetching needed, but how best to apply in recursive case?

31



Administrivia

32



Upcoming schedule changes

Some adjustment of topics (TBD)

Tu 3/11 — Project proposals due

Th 3/13 — SIAM Parallel Processing (attendance encouraged)

Tu 4/1 — No class

Th 4/3 — Attend talk by Doug Post from DoD HPC Modernization Program

33



Homework 1:
Parallel conjugate gradients

Put name on write-up!

Grading: 100 pts max

Correct implementation — 50 pts

Evaluation — 30 pts

Tested on two samples matrices — 5

Implemented and tested on stencil — 10

“Explained” performance (e.g., per proc, load balance, comp. vs. comm) — 15

Performance model — 15 pts

Write-up “quality” — 5 pts

34



Projects

Proposals due Tu 3/11

Your goal should be to do something useful, interesting, and/or publishable!

Something you’re already working on, suitably adapted for this course

Faculty-sponsored/mentored

Collaborations encouraged

35



My criteria for “approving” your 
project

“Relevant to this course:” Many themes, so think (and “do”) broadly

Parallelism and architectures

Numerical algorithms

Programming models

Performance modeling/analysis

36



General styles of projects

Theoretical: Prove something hard (high risk)

Experimental:

Parallelize something

Take existing parallel program, and improve it using models & experiments

Evaluate algorithm, architecture, or programming model

37



Anything of interest to a faculty member/project outside CoC

Parallel sparse triple product (R*A*RT, used in multigrid)

Future FFT

Out-of-core or I/O-intensive data analysis and algorithms

Block iterative solvers (convergence & performance trade-offs)

Sparse LU

Data structures and algorithms (trees, graphs)

Look at mixed-precision

Discrete-event approaches to continuous systems simulation

Automated performance analysis and modeling, tuning

“Unconventional,” but related

Distributed deadlock detection for MPI

UPC language extensions (dynamic block sizes)

Exact linear algebra

Examples

38



Switch: M. Frigo’s talk slides
from CScADS 2007 autotuning 
workshop
http://cscads.rice.edu/workshops/july2007/autotune-workshop-07

39

http://cscads.rice.edu/workshops/july2007/autotune-workshop-07
http://cscads.rice.edu/workshops/july2007/autotune-workshop-07


Cache-oblivious stencil 
computations
[Frigo and Strumpen (ICS 2005)]
[Datta, et al. (2007)]

40



t=0
x=0 16

5

8

Cache-oblivious stencil computation

10

41



t=0
x=0 16

5

8

Cache-oblivious stencil computation

10

w < 2×h:

42



t=0
x=0 16

5

8

Cache-oblivious stencil computation

w < 2×h ⇒ “Time-cut”:

10

43



t=0
x=0 16

5

8

Cache-oblivious stencil computation

10

w ≥ 2×h:

44



t=0
x=0 16

5

8

Cache-oblivious stencil computation

10

w ≥ 2×h ⇒ “Space-cut”:

45



t=0
x=0 16

5

8

Cache-oblivious stencil computation

10

w ≥ 2×h ⇒ “Space-cut”:

46



t=0
x=0 16

5

8

Cache-oblivious stencil computation

10

w < 2×h ⇒ “Time-cut”:

47



t=0
x=0 16

5

8

Cache-oblivious stencil computation

10

Theorem [Frigo & Strumpen (ICS 2005)]:
d = dimension ⇒

Q(n, t; d) = O

(
nd · t

M
1
d

)

48



Source: Datta, et al. (2007)

Cache-oblivious stencil computation:
Fewer misses but more time

49



t=0
x=0 16

5

8

Cache-conscious algorithm

10

b

50



Cache-conscious algorithm

Source: Datta, et al. (2007)

51



“In conclusion…”

52



Backup slides

53


