Autotuning (1/2): Cache-oblivious algorithms

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.17] Tuesday, March 4, 2008

Today's sources

- CS 267 (Demmel & Yelick @ UCB; Spring 2007)
- "An experimental comparison of cache-oblivious and cache-conscious programs?" by Yotov, et al. (SPAA 2007)
- *"The memory behavior of cache oblivious stencil computations,"* by Frigo & Strumpen (2007)
- Talks by Matteo Frigo and Kaushik Datta at CScADS Autotuning Workshop (2007)
- Demaine's @ MIT: <u>http://courses.csail.mit.edu/6.897/spring03/scribe_notes</u>

Η

Review: Tuning matrix multiply

Tiled MM on AMD Opteron 2.2 GHz (4.4 Gflop/s peak), 1 MB L2 cache

< 25% peak! We evidently still have a lot of work to do...

Software pipelining: Interleave iterations to delay dependent instructions

Source: Clint Whaley's code optimization course (UTSA Spring 2007)

Cache-oblivious matrix multiply

[Yotov, Roeder, Pingali, Gunnels, Gustavson (SPAA 2007)] [Talk by M. Frigo at CScADS Autotuning Workshop 2007]

Memory model for analyzing cache-oblivious algorithms

- Two-level memory hierarchy
- M = capacity of cache ("fast")
- L = cache line size
- Fully associative
- Optimal replacement
 - Evicts most distant use
 - Sleator & Tarjan (CACM 1985): LRU, FIFO w/in constant of optimal w/ cache larger by constant factor
- "Tall-cache:" $M \ge O(L^2)$
 - Limits: See Brodal & Fagerberg (STOC 2003)
 - When might this not hold?

- Divide all dimensions in half
- Bilardi, et al.: Use grey-code ordering

I/O Complexity?

$$Q(n) = \begin{cases} 8 \cdot Q(\frac{n}{2}) & \text{if } n > \sqrt{\frac{M}{3}} \\ \frac{3n^2}{L} & \text{otherwise} \end{cases} \leq \Theta\left(\frac{n^3}{L\sqrt{M}}\right)$$

Source: Yotov, et al. (SPAA 2007) and Frigo, et al. (FOCS '99)

Latency-centric vs. bandwidth-centric views of blocking

Time per flop
$$\approx 1 + \frac{\alpha}{\tau} \cdot \frac{1}{b}$$

 $\frac{\alpha}{\tau} \cdot \frac{1}{\kappa} \leq b \leq \sqrt{\frac{M}{3}}$

$$\frac{2n^3}{b} \cdot \frac{1}{\beta} ~\lesssim~ 2n^3 \cdot \frac{1}{\phi} ~\implies~ \frac{\phi}{\beta} \leq b ~~ \text{(Assume can perfectly overlap)} \\ \underset{\text{computation & communication}}{\overset{\text{(b)}}{\overset{\text{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}{\overset{(c)}{\overset{(c)}}$$

16

- Example platform: Itanium 2
- Consider L3 \leftarrow → memory bandwidth
 - $\Phi = 4$ flops / cycle; $\beta = 0.5$ words / cycle
 - L3 capacity = 4 MB (512 kwords)
 - Need $8 \le b_{L3} \le 418$
- Implications: Approximate cache-oblivious blocking works
 - Wide range of block sizes should be OK
 - If upper bound > 2*lower, divide-and-conquer generates block size in range

Source: Yotov, et al. (SPAA 2007)

-

Cache-oblivious vs. cache-aware

- Does cache-oblivious perform as well as cache-aware?
- If not, what can be done?
- Next: Summary of Yotov, et al., study (SPAA 2007)
 - Stole slides liberally

Η

All- vs. largest-dimension

Similar; assume "all-dim"

Η

Data structures

Morton-Z complicated and yields same or worse performance, so assume row-block-row

Example 1: Ultra Illi

- 1 GHz \Rightarrow 2 Gflop/s peak
- Memory hierarchy
 - **32** registers

- L1 = 64 KB, 4-way
- L2 = 1 MB, 4-way
- Sun compiler

-

Summary: Engineering considerations

- Need to cut-off recursion
- Careful scheduling/tuning required at "leaves"
- Yotov, et al., report that full-recursion + tuned micro-kernel $\leq 2/3$ best
- Open issues
 - Recursively-scheduled kernels worse than iteratively-schedule kernels why?
 - Prefetching needed, but how best to apply in recursive case?

Administrivia

Upcoming schedule changes

- Some adjustment of topics (TBD)
- Tu 3/11 Project proposals due
- Th 3/13 SIAM Parallel Processing (attendance encouraged)
- Tu 4/1 No class
- Th 4/3 Attend talk by Doug Post from DoD HPC Modernization Program

Homework 1: Parallel conjugate gradients

- Put name on write-up!
- Grading: 100 pts max
 - Correct implementation 50 pts
 - Evaluation 30 pts
 - Tested on two samples matrices 5
 - Implemented and tested on stencil 10
 - Explained" performance (e.g., per proc, load balance, comp. vs. comm) 15
 - Performance model 15 pts
 - Write-up "quality" 5 pts

Projects

Proposals due Tu 3/11

- Your goal should be to do something useful, interesting, and/or publishable!
 - Something you're already working on, suitably adapted for this course
 - Faculty-sponsored/mentored
 - Collaborations encouraged

My criteria for "approving" your project

- Relevant to this course:" Many themes, so think (and "do") broadly
 - Parallelism and architectures
 - Numerical algorithms
 - Programming models
 - Performance modeling/analysis

General styles of projects

- Theoretical: Prove something hard (high risk)
- Experimental:
 - Parallelize something
 - Take existing parallel program, and improve it using models & experiments
 - Evaluate algorithm, architecture, or programming model

Examples

- Anything of interest to a faculty member/project outside CoC
- Parallel sparse triple product ($R^*A^*R^T$, used in multigrid)
- Future FFT
- Out-of-core or I/O-intensive data analysis and algorithms
- Block iterative solvers (convergence & performance trade-offs)
- Sparse LU
- Data structures and algorithms (trees, graphs)
- Look at mixed-precision
- Discrete-event approaches to continuous systems simulation
- Automated performance analysis and modeling, tuning
- "Unconventional," but related
 - Distributed deadlock detection for MPI
 - UPC language extensions (dynamic block sizes)
 - Exact linear algebra

Switch: M. Frigo's talk slides from CScADS 2007 autotuning workshop

http://cscads.rice.edu/workshops/july2007/autotune-workshop-07

Cache-oblivious stencil

computations

[Frigo and Strumpen (ICS 2005)] [Datta, *et al*. (2007)]

Cache-oblivious stencil computation

Theorem [Frigo & Strumpen (ICS 2005)]: $d = \text{dimension} \Rightarrow$

$$Q(n,t;d) = O\left(\frac{n^d \cdot t}{M^{\frac{1}{d}}}\right)$$

"In conclusion..."

Backup slides