
Single processor tuning (2/2)

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.16] Thursday, February 28, 2008

1

Today’s sources

CS 267 (Demmel & Yelick @ UCB; Spring 2007)

“A family of high-performance matrix multiplication algorithms,” by Gunnels, et al. (2006)

“Anatomy of high-performance matrix multiplication,” by Goto and van de Geijn (2006)

“An experimental comparison of cache-oblivious and cache-conscious programs?” by Yotov,
et al. (SPAA 2007)

Talk by Matteo Frigo at CScADS Autotuning Workshop (2007)

2

Review: GPGPUs.
(I don’t know; you tell me!)

3

Review:
A one-level model of the
memory hierarchy

4

A simple model of memory

Machine balance

⇐ Computational intensity

m ≡ No. words moved from slow to fast memory
f ≡ No. of flops
α ≡ Time per slow memory op.
τ ≡ Time per flop

q ≡ f

m
= Flop-to-mop ratio

T = f · τ + m · α = f · τ ·
(

1 +
α

τ
· 1
q

)

5

Blocked (tiled) matrix multiply

I

K

K

J

m ≈ n3

b
=⇒ q ≈ b

T

f · τ
= 1 +

α

τ
· 1
b

// Let I, J, K = blocks of b indices

for I ← index blocks 1 to
n

b
do

for J ← index blocks 1 to
n

b
do

// Read block CIJ

for K ← index blocks 1 to
n

b
do

// Read block AIK

// Read block BKJ

CIJ ← CIJ + AIK · BKJ

// Write CIJ to slow memory

6

Can we do better? Nope.

Theorem [Hong and Kung (1981)]: Any schedule of
conventional matrix multiply must transfer Ω(n3 / √M) words
between slow and fast memory, where M < n2 / 6.

Last time: We did intuitive proof by Toledo (1999)

Historical note: Rutledge & Rubinstein (1951—52)

So cached block matrix multiply is asymptotically optimal.

b = O
(√

M
)

=⇒ m = O

(
n3

b

)
= O

(
n3

√
M

)

7

Architectural implications

Arch. ≈ α / τ M

Ultra 2i

Ultra 3

Pentium 3

P-3M

Power3

Power4

Itanium 1

Itanium 2

25 1.5 MB

14 460 KB

6.3 94 KB

10 240 KB

8.8 180 KB

15 527 KB

36 3.0 MB

5.5 71 KB

M ≡ Size of fast mem.
3b2 ≤ M

q ≈ b

⇓
M ≥ 3q2

1 +
α

τ
· 1
q

< 1.1

=⇒ M ≥ 300
(α

τ

)2

Note: “M” in bytes to 2 digits; assumes 8-byte (double-precision) words

8

What happens in practice?

Experiment: One-level cache-blocked matrix multiply

Block size chosen as square, by exhaustive search over sizes up to 64

9

Tiled MM on AMD Opteron 2.2 GHz (4.4 Gflop/s peak), 1 MB L2 cache

< 25% peak! We evidently still have a lot of work to do...

10

Review:
Real memory hierarchies

11

What happened at powers of 2?

Byte addressable

32-bit addresses

Cache

Direct-mapped

8 KB capacity

16-byte lines

XXXX XXXX XXXX XXXX XXX0 0000 0000 0000

XXXX XXXX XXXX XXXX XXX0 0000 0001 0000

XXXX XXXX XXXX XXXX XXX0 0000 0010 0000

XXXX XXXX XXXX XXXX XXX0 0000 0011 0000

XXXX XXXX XXXX XXXX XXX0 0000 0100 0000

XXXX XXXX XXXX XXXX XXX0 0000 0101 0000

...

XXXX XXXX XXXX XXXX XXX1 1111 1111 0000

16 B

12

Fast

Slow

Registers

L1

L2

Main

13

Fast

Slow

Registers

L1

TLB

L2

Main

14

TLB is part of the memory hierarchy

Translation Look-aside Buffer (TLB) for virtual address space management

Divide address space into pages (4—32 KB typical, larger possible)

Page table maps virtual to physical addrs & whether page in mem or on disk

Page table can be large; TLB caches recent translations

May be set-associative or fully-associative

Conceptually like a cache with large block size, i.e., 1 page

May have multiple levels of TLB, just like cache

Can prefetch to hide cache misses, but not TLB misses

15

s

Experiment to observe memory
parameters.

Strided-stream through array; measure average access time.
(Saavedra-Barrera benchmark)

16

Average Memory Access Time (Saavedra-Barerra) — Sun Ultra IIi (333 MHz)

L1: 16 KB
16 B lines

L2: 2 MB
64 B lines

TLB: 8 KB page
32 entries

Mem

17

Average Memory Access Time (Saavedra-Barerra) — Pentium III (Katmai; 550 MHz)

L1: 16 KB
32 B lines

L2: 512 KB
32 B lines

TLB:
4 KB page
64 entries

Mem

18

General multi-level blocking
[Goto & van de Geijn (2006)]

19

C ← C + A · B

C

B

Am

k

k

n
“Matrix-matrix”

“Matrix-panel” “Panel-matrix”
“Panel-Panel”

or “Fat Outer Product”

20

C

B

A

21

C

B

A

22

C

B

A

23

C

B

A

24

C ← C + A · B

C

B

Am

k

k

n
“Matrix-matrix”

“Block-Panel” “Panel-block” “Fat Dot Product”

25

C

B

A

26

27

28

29

m

k n

bm

bkbk

bk

bn

bk

bm

J

IK

// Let I, J, K = blocks of indices

for K ← blocks 1 to
k

bk
do

for I ← blocks 1 to
m

bm
do

for J ← blocks 1 to
n

bn
do

CIJ ← CIJ + AIK ×BKJ

30

bk

bm

J

// “Block-panel” multiply
// Load bm × bk block of A into cache

for J ← blocks 1 to
n

bn
do

// Load bk × bn block of B into cache
// Load bm × bn block of C into cache
CJ ← CJ + A×BJ

// Store bm × bn block of C to memory

n

bn

bmbk + (bk + bm)bn ≤M

Assumes:
1. A, BJ, CJ fit in cache (e.g., size M)
2. Above ⇒ Product runs at peak

3. A not evicted prematurely

31

bn

bk

bm

J

// “Block-panel” multiply
// Load bm × bk block of A into cache

for J ← blocks 1 to
n

bn
do

// Load bk × bn block of B into cache
// Load bm × bn block of C into cache
CJ ← CJ + A×BJ

// Store bm × bn block of C to memory

n

f = 2bmbkn

m = bmbk + (bk + 2bm) n

⇓

q =
2

1
n +

(
1

bm
+ 2

bk

)

bmbk + (bk + bm)bn ≤M

Assumes:
1. A, BJ, CJ fit in cache (e.g., size M)
2. Above ⇒ Product runs at peak

3. A not evicted prematurely

32

bn

bk

bm

J

n

Given a multi-level memory hierarchy,
in what cache should “A” block live?

❖ Want large A block
❖ L1 cache usually quite small
❖ What about L2?

Assumes:
1. A, BJ, CJ fit in cache (e.g., size M)
2. Above ⇒ Product runs at peak

3. A not evicted prematurely

bmbk + (bk + bm)bn ≤M

2bmbkbn

ρ1
≥ bmbk

β2

⇓
bn ≥ ρ1

2β2

ρ1 ≡ Peak L1 flop/s
β2 ≡ Peak L2 to CPU bw

Typically, need bn >= 2.

33

bn

bk

bm

J

n

Assumes:
1. A, BJ, CJ fit in cache (e.g., size M)
2. Above ⇒ Product runs at peak

3. A not evicted prematurely

bmbk + (bk + bm)bn ≤ M

bn ≥ ρ1

2β2

34

bn

bk

bm

J

n

What about the TLB?

Assumes:
1. A, BJ, CJ fit in cache (e.g., size M)
2. Above ⇒ Product runs at peak

3. A not evicted prematurely

bmbk + (bk + bm)bn ≤ M

bn ≥ ρ1

2β2

35

Considerations for TLB

Matrix

n = 1024

Column-major order

TLB

Page = 4 KB

32 entries

1

512

1024

1 2 32 333

36

bn

bk

bm

J

n

What about the TLB?

Block of A straddles pages, so re-pack
on-the-fly ⇒ “Copy optimization”

Copy B panel as well

Assumes:
1. A, BJ, CJ fit in cache (e.g., size M)
2. Above ⇒ Product runs at peak

3. A not evicted prematurely
4. Operands “fit in” TLB

bmbk + (bk + bm)bn ≤ M

bn ≥ ρ1

2β2

37

Panel-Block Fat-Dot

38

m

k n

bm

bkbk

bk

bn

bk

bm

J

IK

// Let I, J, K = blocks of indices

for K ← blocks 1 to
k

bk
do

B̃ ← BK,!

for I ← blocks 1 to
m

bm
do

Ã← AIK

for J ← blocks 1 to
n

bn
do

C̃ ← Ã× B̃J // Compute in buffer, C̃

CIJ ← CIJ + C̃ // Unpack C̃

39

C

B

A

Which is better?

40

Source: Vuduc, Demmel, Bilmes (IJHPCA 2004)

0

0.0751

0.1502

0.2252

0.3003

0.3754

0.4505

0.5255

0.6006

0.6757

0.7508

0.8258

0.9009

Fraction of P
eak

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

50

100

150

200

250

300

350

400

450

500

550

600

matrix dimension (n)

P
er

fo
rm

an
ce

 (M
flo

p/
s)

Dense Matrix Multiply Performance (Square n×n Operands) [333 MHz Sun Ultra 2i]

Vendor
Reg/insn−level + cache tiling + copy opt.
Cache tiling + copy opt.
Reference

41

0

0.0625

0.125

0.1875

0.25

0.3125

0.375

0.4375

0.5

0.5625

0.625

0.6875

0.75

0.8125

0.875

Fraction of P
eak

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

matrix dimension (n)

P
er

fo
rm

an
ce

 (M
flo

p/
s)

Dense Matrix Multiply Performance (Square n×n Operands) [800 MHz Intel Pentium III−mobile]

Vendor
Goto−BLAS
Reg/insn−level + cache tiling + copy
Cache tiling + copy opt.
Reference

Source: Vuduc, Demmel, Bilmes (IJHPCA 2004)

42

bn

bk

bm

J

r

c

c

Inner-kernel

Scheduling

Register allocation

43

Administrivia

44

Two joint classes with CS 8803 SC

Tues 2/19: Floating-point issues in parallel computing by me

Tues 2/26: GPGPUs by Prof. Hyesoon Kim

Scribe?

Both classes meet in Klaus 1116E

45

Homework 1:
Parallel conjugate gradients

Extension: Due Wednesday 2/27 @ 8:30 am

Implement a parallel solver for Ax = b (serial C version provided)

Evaluate on three matrices: 27-pt stencil, and two application matrices

“Simplified:” No preconditioning

Performance models to understand scalability of your implementation

Make measurements

Build predictive models

Collaboration encouraged: Compare programming models or platforms

46

Administrative stuff

New room (dumpier, but cozier?): College of Computing Building (CCB) 101

Accounts: Apparently, you already have them

Front-end login node: ccil.cc.gatech.edu (CoC Unix account)

We “own” warp43—warp56

Some docs (MPI): http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html

Sign-up for mailing list: https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

47

http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

Projects

Your goal should be to do something useful, interesting, and/or publishable!

Something you’re already working on, suitably adapted for this course

Faculty-sponsored/mentored

Collaborations encouraged

48

My criteria for “approving” your
project

“Relevant to this course:” Many themes, so think (and “do”) broadly

Parallelism and architectures

Numerical algorithms

Programming models

Performance modeling/analysis

49

General styles of projects

Theoretical: Prove something hard (high risk)

Experimental:

Parallelize something

Take existing parallel program, and improve it using models & experiments

Evaluate algorithm, architecture, or programming model

50

Anything of interest to a faculty member/project outside CoC

Parallel sparse triple product (R*A*RT, used in multigrid)

Future FFT

Out-of-core or I/O-intensive data analysis and algorithms

Block iterative solvers (convergence & performance trade-offs)

Sparse LU

Data structures and algorithms (trees, graphs)

Look at mixed-precision

Discrete-event approaches to continuous systems simulation

Automated performance analysis and modeling, tuning

“Unconventional,” but related

Distributed deadlock detection for MPI

UPC language extensions (dynamic block sizes)

Exact linear algebra

Examples

51

Inner-kernel

52

Doesn’t the compiler do
scheduling and reg. allocation?

Theorem (Motwani, et al., 1995): Given a DAG, finding the
schedule and register assignment to minimize register spills
is NP-Hard.

Theorem (Belady, 1966): Given a DAG and a schedule, finding
the register assignment to minimize register spills can be
done in ≈ linear time.

Source: Talk by M. Frigo at CScADS autotuning workshop (2007)

53

Loop unrolling: Reducing loop overheads

Source: Clint Whaley’s code optimization course (UTSA Spring 2007)

54

Source: Clint Whaley’s code optimization course (UTSA Spring 2007)

Scalar expansion: Removing serial dependencies

55

Source: Clint Whaley’s code optimization course (UTSA Spring 2007)

Unroll and jam + register blocking

56

Software pipelining: Interleave iterations to delay dependent instructions

i-4
i-3

i

i+1

Source: Clint Whaley’s code optimization course (UTSA Spring 2007)

m3;

57

Fetch scheduling, for cache lines and hardware prefetching engines

Source: Clint Whaley’s code optimization course (UTSA Spring 2007)

58

Software prefetching

Source: Clint Whaley’s code optimization course (UTSA Spring 2007)

59

0

0.0625

0.125

0.1875

0.25

0.3125

0.375

0.4375

0.5

0.5625

0.625

0.6875

0.75

0.8125

0.875

Fraction of P
eak

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

matrix dimension (n)

P
er

fo
rm

an
ce

 (M
flo

p/
s)

Dense Matrix Multiply Performance (Square n×n Operands) [800 MHz Intel Pentium III−mobile]

Vendor
Goto−BLAS
Reg/insn−level + cache tiling + copy
Cache tiling + copy opt.
Reference

60

“In conclusion…”

61

Backup slides

62

L1: 32 KB
128 B lines
~ 0.5+ cy

L2: 8 MB
128 B lines
~ 6 cy

TLB: 4 KB
256 entries

Mem
~ 21 cy?

63

