Single processor tuning (1/2)

Prof. Richard Vuduc
Georgia Institute of Technology
CSE/CS 8803 PNA: Parallel Numerical Algorithms
[L.14] Thursday, February 21, 2008

Today's sources

H. CS 267 (Yelick @ UCB; Spring 2007)
". "A survey of out-of-core algorithms in numerical linear algebra," by Toledo (1999)
". "A family of high-performance matrix multiplication algorithms," by Gunnels, et al. (2006)
". "On reducing TLB misses in matrix multiplication," by Goto and van de Geijn (2002)
". "Is search really necessary to generate high-performance BLAS?" by Yotov, et al. (2005)

Review: Accuracy, stability, and parallelism

The impact of parallelism on numerical algorithms

H. Larger problems magnify errors: Round-off, ill-conditioning, instabilities
H. Reproducibility: $a+(b+c) \neq(a+b)+c$
H. Fast parallel algorithm may be much less stable than fast serial algorithm
H. Flops cheaper than communication
H. Speeds at different precisions may vary significantly [e.g., SSE ${ }_{k}$, Cell]
:. Perils of arithmetic heterogenity, e.g., CPU vs. GPU support of IEEE

Mixed (forward-backward) stability

". Computed answer "near" exact solution of a nearby problem

$$
\Delta x, \Delta y: \quad \hat{y}+\Delta y=f(x+\Delta x)
$$

Conditioning: Relating forward and backward error

$$
\left|\frac{\hat{y}-y}{y}\right| \lesssim\left|\frac{x f^{\prime}(x)}{f(x)}\right| \cdot\left|\frac{\Delta x}{x}\right|
$$

H. Define (relative) condition number:

$$
c(x)=\left|\frac{x f^{\prime}(x)}{f(x)}\right|
$$

E. Roughly: (Forward error) \leq (Condition number) * (Backward error)

Mixed-precision iterative refinement

H. Inner-loop of mixed-precision iterative refinement algorithm:

$$
\begin{aligned}
& \text { Single, } O\left(n^{3}\right) \Rightarrow \\
& \text { Double, } O\left(n^{2}\right) \Rightarrow \\
& \text { Single, } O\left(n^{2}\right) \Rightarrow \\
& \text { Solve } A \cdot b-A \cdot \hat{d}=\hat{r} \\
& \text { Double, } O(n) \Rightarrow \hat{x}^{(\text {improved })} \leftarrow \hat{x}+\hat{d}
\end{aligned}
$$

H. Theorem: Repeated iterative refinement converges by η at each stage, and

$$
\begin{aligned}
x^{(t)} & \equiv \text { Estimate at iteration } t, \text { in precision } \epsilon \\
r^{(t)} & \equiv \text { Residual, in precision } \epsilon^{2} \\
\eta & \equiv \epsilon \cdot\left\|\left|A^{-1}\right| \cdot|\hat{L}| \cdot|\hat{U}|\right\|_{\infty}<1 \\
\frac{\left\|x^{(t)}-x\right\|_{\infty}}{\|x\|_{\infty}} & \rightarrow O(\epsilon) \quad \text { Independent of } \mathrm{K}(\mathbf{A})!
\end{aligned}
$$

Obstacles to fast and stable parallel numerical algorithms

H. Algorithms that work on small problems may fail at large sizes
.. Round-off accumulates
A. Condition number increases
H. Probability of "random instability" increases
H. Fast (parallel) algorithm may be less stable \Rightarrow trade-off

$$
\begin{aligned}
y & = \pm m \times 2^{e-t} \\
y \neq 0 & \Longrightarrow m \geq 2^{t-1} \leftarrow \text { "Normalized" }
\end{aligned}
$$

IEEE formats

Format	Total bits	Exp. bits $\left(\Theta_{\text {min }}, \Theta_{\text {max }}\right)$	$t-1$	ε	Fortran / C
Single	32	8 $(-125,128)$	23	6×10^{-8}	REAL*4 float
Double	64	11 $(-1021,1024)$	52	10^{-16}	REAL*8 doub7e
Extended (Intel)	80	15 $(-16381,16384)$	64	5×10^{-20}	REAL*10 long doub7e

Reasoning about memory hierarchies

Cost	1 ns	10 ns	100 ns	10 ms	10 sec
Size	B	KB	MB	GB	TB

Recall: Memory hierarchies.

Cost of accessing data depends on where data lives.

Memory hierarchies reflect growing processor-memory speed gap.

Dealing with high memory latency

:. Use caches as fast memory
H. Store data that will be reused many times: temporal locality
:. Save chunks of contiguous data: spatial locality
E. Exploit fact that bandwidth improves faster than latency: prefetch
". Modern processors automate cache management
H. All loads cached automatically (LRU), and loaded in chunks (cache line size)
:. Typical to have a hardware prefetcher that detects simple patterns

A simple model of memory

$$
\begin{aligned}
& m \equiv \text { No. words moved from slow to fast memory } \\
& f \equiv \text { No. of flops } \\
& \alpha \equiv \text { Time per slow memory op. } \\
& \tau \equiv \text { Time per flop } \\
& q \equiv \frac{f}{m}=\text { Flop-to-mop ratio } \& \text { Computational intensity } \\
& T=f \cdot \tau+m \cdot \alpha=f \cdot \tau \cdot\left(1+\frac{\alpha}{\tau} \cdot \frac{1}{q}\right) \\
& \text { Machine balance }
\end{aligned}
$$

Example: Matrix-vector multiply

Implements $y \leftarrow y+A \cdot x$

for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do

$$
y_{i} \leftarrow y_{i}+a_{i j} \cdot x_{j}
$$

Example: Matrix-vector multiply

```
// Implements }y\leftarrowy+A\cdot
// Read x (into fast memory)
// Read y
```



```
for \(i \leftarrow 1\) to \(n\) do
// Read \(a_{i, \star}\)
for \(j \leftarrow 1\) to \(n\) do
\[
y_{i} \leftarrow y_{i}+a_{i j} \cdot x_{j}
\]
// Write \(y\) to slow memory
```


Example: Matrix-vector multiply

Machine balance, $\alpha /$ т

[See my thesis]

Empirically-derived sustainable machine balance

Simplifying assumptions

H. Ignored flop/mop parallelism within processor \rightarrow drop arithmetic term
.. Assumed fast memory large enough to hold vectors
\#. Assumed no-cost fast memory access
H. Memory latency is constant, charged per word
". Ignored cache lines / block transfers
:. Ignored bandwidth

Predictive accuracy of this model

Naive matrix-matrix multiply

```
// Implements C}\leftarrowC+A\cdot
for }i\leftarrow1\mathrm{ to }n\mathrm{ do
for }j\leftarrow1\mathrm{ to }n\mathrm{ do
```

for $k \leftarrow 1$ to n do

for $k \leftarrow 1$ to n do

$$
\begin{aligned}
\text { Best case } \Rightarrow m & \geq 4 n^{2} \\
\frac{T}{f \cdot \tau} & \geq 1+\frac{\alpha}{\tau} \cdot \frac{2}{n}
\end{aligned}
$$

Naive matrix-matrix multiply

// Implements $C \leftarrow C+A \cdot B$
for $i \leftarrow 1$ to n do
// Read row $a_{i, \star}$
for $j \leftarrow 1$ to n do
// Read col $b_{\star, j}$
// Read $c_{i, j}$
for $k \leftarrow 1$ to n do

$$
c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}
$$

// Write $c_{i j}$ to slow memory

Blocked (tiled) matrix multiply

// Let $I, J, K=$ blocks of b indices
for $I \leftarrow$ index blocks 1 to $\frac{n}{b}$ do for $J \leftarrow$ index blocks 1 to $\frac{n}{b}$ do
// Read block $C_{I J}$
for $K \leftarrow$ index blocks 1 to $\frac{n}{b}$ do

// Read block $A_{I K}$
// Read block $B_{K J}$
$B_{I J} \leftarrow c_{I J}+A_{I K} \cdot B_{K J}$
// Write $C_{I J}$ to slow memory

Blocked (tiled) matrix multiply

$$
\begin{aligned}
m \approx \frac{n^{3}}{b} & \Longrightarrow q \approx b \\
\frac{T}{f \cdot \tau} & =1+\frac{\alpha}{\tau} \cdot \frac{1}{b}
\end{aligned}
$$

Architectural implications

Arch.	$\approx \alpha / \mathrm{T}$	M
Ultra 2i	25	1.5 MB
Ultra 3	14	460 KB
Pentium 3	6.3	94 KB
P-3M	10	240 KB
Power3	8.8	180 KB
Power4	15	527 KB
Itanium 1	36	3.0 MB
Itanium 2	5.5	71 KB

$$
\begin{aligned}
M & \equiv \text { Size of fast mem. } \\
3 b^{2} & \leq M \\
q & \approx b \\
& \Downarrow \\
M & \geq 3 q^{2} \\
1+\frac{\alpha}{\tau} \cdot \frac{1}{q} & <1.1 \\
\Longrightarrow M & \geq 300\left(\frac{\alpha}{\tau}\right)^{2}
\end{aligned}
$$

" M " in bytes to 2 digits; assumes 8-byte (double-precision) words

Can we do better?

$$
\begin{aligned}
b & =O(\sqrt{M}) \\
\Rightarrow m & =O\left(\frac{n^{3}}{b}\right)=O\left(\frac{n^{3}}{\sqrt{M}}\right)
\end{aligned}
$$

Bounding amount of I/O possible

\#. Consider a schedule in phases of exactly M transfers each (except last)
.. Definition: $c(i, j)$ is live during phase p if ...
". ... for some k, we compute $a(i, k){ }^{*} b(k, j)$;
:. and some partial sum of $c(i, j)$ is either in cache or moved to main memory
\#. At most $2^{*} M$ live $c(i, j)$ in phase p
H. At most $2^{*} M$ distinct elements of A in cache during phase p; same for B
:. Either in cache at beginning or moved to cache during phase
\#. Let A_{p} be set of elements in cache during phase p; same for B_{p}

How many multiplies in phase p ?

H. Let $S_{p,+}=$ set of rows of A with $M^{1 / 2}$ or more elements in A_{p}
H. Let $S_{p,-}=$ set of rows of A with fewer
A. $\left|S_{p,+}\right| \leq 2^{*} M^{1 / 2}$
H. Consider rows in $S_{p,+}$:
". Operation "a(i, :) $\times B$ " touches each element of B only once
\#. So, no. of scalar multiplies $\leq\left|S_{p,+}\right|^{*}\left(2^{*} M\right)=4^{*} M^{3 / 2}$
A. For rows in $S_{p_{p}, \text {, }}$, consider that "c(i,j) $=$ row \times col"
:. Thus, (\# multiplies) \leq (no. live) $\times(\max$ row len $) \leq 2^{\star} M^{3 / 2}$

Final bound on multiplies

Total no. of multiplies $=n^{3}$
No. of multiplies per phase $\leq 6 M^{\frac{3}{2}}$

$$
\text { No. of phases } \geq\left\lceil\frac{n^{3}}{6 M^{\frac{3}{2}}}\right\rceil
$$

Total no. of words transferred $\geq M \cdot\left(\frac{n^{3}}{6 M^{\frac{3}{2}}}-1\right)$

$$
=\frac{n^{3}}{6 \sqrt{M}}-M
$$

Can we do better? Nope.

H. Theorem [Hong and Kung (1981)]: Any schedule of conventional matrix multiply must transfer $\Omega\left(n^{3} / \sqrt{ } M\right)$ words between slow and fast memory, where $M<n^{2} / 6$.
:. We did intuitive proof by Toledo (1999)
H. Historical note: Rutledge \& Rubinstein (1951 - 52)
H. So cached block matrix multiply is asymptotically optimal.
$b=O(\sqrt{M}) \Longrightarrow m=O\left(\frac{n^{3}}{b}\right)=O\left(\frac{n^{3}}{\sqrt{M}}\right)$

What happens in practice?

H. Experiment: One-level cache-blocked matrix multiply
H. Block size chosen as square, by exhaustive search over sizes up to 64

Tiled MM on AMD Opteron 2.2 GHz (4.4 Gflop/s peak), 1 MB L2 cache

We evidently still have a lot of work to do...

Administrivia

Two joint classes with CS 8803 SC

H. Tues 2/19: Floating-point issues in parallel computing by me
H. Tues 2/26: GPGPUs by Prof. Hyesoon Kim
H. Scribe?
H. Both classes meet in Klaus 1116E

Homework 1: Parallel conjugate gradients

H. Extension: Due Wednesday 2/27 @ 8:30 am
H. Implement a parallel solver for $\mathrm{Ax}=\mathrm{b}$ (serial C version provided)
:. Evaluate on three matrices: 27-pt stencil, and two application matrices
.. "Simplified:" No preconditioning
H. Performance models to understand scalability of your implementation
H. Make measurements
H. Build predictive models
H. Collaboration encouraged: Compare programming models or platforms

Administrative stuff

I. New room (dumpier, but cozier?): College of Computing Building (CCB) 101
\#. Accounts: Apparently, you already have them
H. Front-end login node: ccil.cc.gatech.edu (CoC Unix account)
:. We "own" warp43-warp56
". Some docs (MPI): http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
H. Sign-up for mailing list: https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

Projects

H. Your goal should be to do something useful, interesting, and/or publishable!
H. Something you're already working on, suitably adapted for this course
H. Faculty-sponsored/mentored
I. Collaborations encouraged

My criteria for "approving" your project

A. "Relevant to this course:" Many themes, so think (and "do") broadly
.. Parallelism and architectures
H. Numerical algorithms
\#. Programming models
". Performance modeling/analysis

General styles of projects

H. Theoretical: Prove something hard (high risk)
H. Experimental:
-. Parallelize something
:. Take existing parallel program, and improve it using models \& experiments
:. Evaluate algorithm, architecture, or programming model

Examples

.. Anything of interest to a faculty member/project outside CoC
H. Parallel sparse triple product $\left(R^{*} A^{*} R^{\top}\right.$, used in multigrid)
!. Future FFT
:. Out-of-core or l/O-intensive data analysis and algorithms
E. Block iterative solvers (convergence \& performance trade-offs)
.. Sparse LU
*. Data structures and algorithms (trees, graphs)
\#. Discrete-event approaches to continuous systems simulation
E. Automated performance analysis and modeling, tuning
:. "Unconventional," but related
.. Distributed deadlock detection for MPI
.. UPC language extensions (dynamic block sizes)
H. Exact linear algebra
"In conclusion..."

Backup slides

