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Today’s sources

CS 267 (Yelick @ UCB; Spring 2007)

“A survey of out-of-core algorithms in numerical linear algebra,” by Toledo (1999)

“A family of high-performance matrix multiplication algorithms,” by Gunnels, et al. (2006)

“On reducing TLB misses in matrix multiplication,” by Goto and van de Geijn (2002)

“Is search really necessary to generate high-performance BLAS?” by Yotov, et al. (2005)
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Review: Accuracy, stability, and 
parallelism
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The impact of parallelism on 
numerical algorithms

Larger problems magnify errors: Round-off, ill-conditioning, instabilities

Reproducibility: a + (b + c) ≠ (a + b) + c

Fast parallel algorithm may be much less stable than fast serial algorithm

Flops cheaper than communication

Speeds at different precisions may vary significantly [e.g., SSEk, Cell]

Perils of arithmetic heterogenity, e.g., CPU vs. GPU support of IEEE
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Mixed (forward-backward) stability

Computed answer “near” exact solution of a nearby problem

∆x,∆y : ŷ + ∆y = f(x + ∆x)

x

x + ∆x

y = f(x)

ŷ

f(x + ∆x)

∆y
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Conditioning: Relating forward and 
backward error

Define (relative) condition number:

Roughly: (Forward error) ≤ (Condition number) * (Backward error)
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Mixed-precision iterative refinement

Inner-loop of mixed-precision iterative refinement algorithm:

Theorem: Repeated iterative refinement converges by η at each stage, and

⇐ Independent of κ(A)!

x̂ = Estimated solution to Ax = b

r̂ ← b−A · x̂

Solve A · d̂ = r̂

x̂(improved) ← x̂ + d̂

Single, O(n3) ⇒
Double, O(n2) ⇒
Single, O(n2) ⇒
Double, O(n) ⇒

x(t) ≡ Estimate at iteration t, in precision ε

r(t) ≡ Residual, in precision ε2

η ≡ ε · || |A−1| · |L̂| · |Û | ||∞ < 1
||x(t) − x||∞

||x||∞
→ O(ε)
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Obstacles to fast and stable parallel 
numerical algorithms

Algorithms that work on small problems may fail at large sizes

Round-off accumulates

Condition number increases

Probability of “random instability” increases

Fast (parallel) algorithm may be less stable ⇒ trade-off
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±

−125 = emin ≤ e ≤ emax = 128

0 ≤ m < 224 ≈ 16 million

y = ± m × 2e−t

y "= 0 =⇒ m ≥ 2t−1
“Normalized”
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IEEE formats

±

emin ≤ e ≤ emax 0 ≤ m < 2t

Format Total bits
Exp. bits

(emin, emax)
t-1 ε Fortran / C

Single

Double

Extended
(Intel)

32
8

(-125, 128)
23 6 × 10-8 REAL*4

float

64
11

(-1021, 1024)
52 10-16 REAL*8

double

80
15

(-16381, 16384)
64 5 × 10-20 REAL*10

long double
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Reasoning about memory 
hierarchies
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on-chip
cacheregisters

datapath

control

processor

Second
level
cache
(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

TBGBMBKBBSize

10sec10ms100ns10ns1nsCost

Recall: Memory hierarchies.
Cost of accessing data depends on where data lives.
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Memory hierarchies reflect growing 
processor-memory speed gap.
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Dealing with high memory latency

Use caches as fast memory

Store data that will be reused many times: temporal locality

Save chunks of contiguous data: spatial locality

Exploit fact that bandwidth improves faster than latency: prefetch

Modern processors automate cache management

All loads cached automatically (LRU), and loaded in chunks (cache line size)

Typical to have a hardware prefetcher that detects simple patterns
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A simple model of memory

Machine balance

⇐ Computational intensity

m ≡ No. words moved from slow to fast memory
f ≡ No. of flops
α ≡ Time per slow memory op.
τ ≡ Time per flop

q ≡ f

m
= Flop-to-mop ratio

T = f · τ + m · α = f · τ ·
(

1 +
α

τ
· 1
q

)
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Example: Matrix-vector multiply

← + *

// Implements y ← y + A · x

for i← 1 to n do

for j ← 1 to n do
yi ← yi + aij · xj
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Example: Matrix-vector multiply
// Implements y ← y + A · x

// Read x (into fast memory)
// Read y

for i← 1 to n do
// Read ai,!

for j ← 1 to n do
yi ← yi + aij · xj

// Write y to slow memory

← + *
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Example: Matrix-vector multiply
// Implements y ← y + A · x

// Read x (into fast memory)
// Read y

for i← 1 to n do
// Read ai,!

for j ← 1 to n do
yi ← yi + aij · xj

// Write y to slow memory

f = 2n2

m = 3n + n2

q ≈ 2
⇓

T

f · τ
≈ 1 +

α

τ
· 1
2

← + *
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Machine balance, α / τ
[See my thesis]
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Simplifying assumptions

Ignored flop/mop parallelism within processor → drop arithmetic term

Assumed fast memory large enough to hold vectors

Assumed no-cost fast memory access

Memory latency is constant, charged per word

Ignored cache lines / block transfers

Ignored bandwidth
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Predictive accuracy of this model
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Naive matrix-matrix multiply

// Implements C ← C + A · B

for i← 1 to n do

for j ← 1 to n do

for k ← 1 to n do
cij ← cij + aik · bkj

Best case ⇒
f = 2n3

m ≥ 4n2

T

f · τ
≥ 1 +

α

τ
· 2
n
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Naive matrix-matrix multiply

// Implements C ← C + A · B

for i← 1 to n do
// Read row ai,!

for j ← 1 to n do
// Read col b!,j

// Read ci,j

for k ← 1 to n do
cij ← cij + aik · bkj

// Write cij to slow memory

f = 2n3

m = n3 + 3n2

T

f · τ
≈ 1 +

α

τ
· 1
2
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Blocked (tiled) matrix multiply

// Let I, J, K = blocks of b indices

for I ← index blocks 1 to
n

b
do

for J ← index blocks 1 to
n

b
do

// Read block CIJ

for K ← index blocks 1 to
n

b
do

// Read block AIK

// Read block BKJ

BIJ ← cIJ + AIK · BKJ

// Write CIJ to slow memory

I

K

K

J
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Blocked (tiled) matrix multiply

m ≈ n3

b
=⇒ q ≈ b

T

f · τ
= 1 +

α

τ
· 1
b
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Architectural implications

Arch. ≈ α / τ M

Ultra 2i

Ultra 3

Pentium 3

P-3M

Power3

Power4

Itanium 1

Itanium 2

25 1.5 MB

14 460 KB

6.3 94 KB

10 240 KB

8.8 180 KB

15 527 KB

36 3.0 MB

5.5 71 KB

M ≡ Size of fast mem.
3b2 ≤ M

q ≈ b

⇓
M ≥ 3q2

1 +
α

τ
· 1
q

< 1.1

=⇒ M ≥ 300
(α

τ

)2

“M” in bytes to 2 digits; assumes 8-byte (double-precision) words
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Can we do better?

b = O
(√

M
)

=⇒ m = O

(
n3

b

)
= O

(
n3

√
M

)
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Bounding amount of I/O possible

Consider a schedule in phases of exactly M transfers each (except last)

Definition: c(i,j) is live during phase p if ...

… for some k, we compute a(i,k) * b(k, j);

and some partial sum of c(i, j) is either in cache or moved to main memory

At most 2*M live c(i, j) in phase p

At most 2*M distinct elements of A in cache during phase p; same for B

Either in cache at beginning or moved to cache during phase

Let Ap be set of elements in cache during phase p; same for Bp
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How many multiplies in phase p?

Let Sp,+ = set of rows of A with M1/2 or more elements in Ap

Let Sp,- = set of rows of A with fewer

|Sp,+| ≤ 2*M1/2

Consider rows in Sp,+:

Operation “a(i, :) × B” touches each element of B only once

So, no. of scalar multiplies ≤ |Sp,+| * (2*M) = 4*M3/2

For rows in Sp,-, consider that “c(i,j) = row x col”

Thus, (# multiplies) ≤ (no. live) x (max row len) ≤ 2*M3/2
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Final bound on multiplies

Total no. of multiplies = n3

No. of multiplies per phase ≤ 6M
3
2

No. of phases ≥
⌈

n3

6M
3
2

⌉

Total no. of words transferred ≥ M ·
(

n3

6M
3
2
− 1

)

=
n3

6
√

M
−M
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Can we do better? Nope.

Theorem [Hong and Kung (1981)]: Any schedule of 
conventional matrix multiply must transfer Ω(n3 / √M) words 
between slow and fast memory, where M < n2 / 6.

We did intuitive proof by Toledo (1999)

Historical note: Rutledge & Rubinstein (1951—52)

So cached block matrix multiply is asymptotically optimal.

b = O
(√

M
)

=⇒ m = O

(
n3

b

)
= O

(
n3

√
M

)
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What happens in practice?

Experiment: One-level cache-blocked matrix multiply

Block size chosen as square, by exhaustive search over sizes up to 64
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Tiled MM on AMD Opteron 2.2 GHz (4.4 Gflop/s peak), 1 MB L2 cache

We evidently still have a lot of work to do...
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Administrivia
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Two joint classes with CS 8803 SC

Tues 2/19: Floating-point issues in parallel computing by me

Tues 2/26: GPGPUs by Prof. Hyesoon Kim

Scribe?

Both classes meet in Klaus 1116E
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Homework 1:
Parallel conjugate gradients

Extension: Due Wednesday 2/27 @ 8:30 am

Implement a parallel solver for Ax = b (serial C version provided)

Evaluate on three matrices: 27-pt stencil, and two application matrices

“Simplified:” No preconditioning

Performance models to understand scalability of your implementation

Make measurements

Build predictive models

Collaboration encouraged: Compare programming models or platforms
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Administrative stuff

New room (dumpier, but cozier?): College of Computing Building (CCB) 101

Accounts: Apparently, you already have them

Front-end login node: ccil.cc.gatech.edu (CoC Unix account)

We “own” warp43—warp56

Some docs (MPI): http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html

Sign-up for mailing list: https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab
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Projects

Your goal should be to do something useful, interesting, and/or publishable!

Something you’re already working on, suitably adapted for this course

Faculty-sponsored/mentored

Collaborations encouraged
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My criteria for “approving” your 
project

“Relevant to this course:” Many themes, so think (and “do”) broadly

Parallelism and architectures

Numerical algorithms

Programming models

Performance modeling/analysis
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General styles of projects

Theoretical: Prove something hard (high risk)

Experimental:

Parallelize something

Take existing parallel program, and improve it using models & experiments

Evaluate algorithm, architecture, or programming model
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Anything of interest to a faculty member/project outside CoC

Parallel sparse triple product (R*A*RT, used in multigrid)

Future FFT

Out-of-core or I/O-intensive data analysis and algorithms

Block iterative solvers (convergence & performance trade-offs)

Sparse LU

Data structures and algorithms (trees, graphs)

Discrete-event approaches to continuous systems simulation

Automated performance analysis and modeling, tuning

“Unconventional,” but related

Distributed deadlock detection for MPI

UPC language extensions (dynamic block sizes)

Exact linear algebra

Examples
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“In conclusion…”
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Backup slides

43


