Single processor tuning (1/2)

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.14] Thursday, February 21, 2008

Today's sources

- CS 267 (Yelick @ UCB; Spring 2007)
- *A survey of out-of-core algorithms in numerical linear algebra," by Toledo (1999)
- * "A family of high-performance matrix multiplication algorithms," by Gunnels, et al. (2006)
- "On reducing TLB misses in matrix multiplication," by Goto and van de Geijn (2002)
- "Is search really necessary to generate high-performance BLAS?" by Yotov, et al. (2005)

Review: Accuracy, stability, and parallelism

The impact of parallelism on numerical algorithms

- Larger problems magnify errors: Round-off, ill-conditioning, instabilities
- **Reproducibility**: $a + (b + c) \neq (a + b) + c$
- Fast **parallel algorithm** may be much **less stable** than fast serial algorithm
- **Flops cheaper** than communication
- **Speeds at different precisions** may vary significantly [*e.g.*, SSE_k, Cell]
- Perils of **arithmetic heterogenity**, *e.g.*, CPU vs. GPU support of IEEE

Mixed (forward-backward) stability

Computed answer "near" exact solution of a nearby problem

Conditioning: Relating forward and backward error

$$\frac{\hat{y} - y}{y} \bigg| \lesssim \bigg| \frac{xf'(x)}{f(x)} \bigg| \cdot \bigg| \frac{\Delta x}{x} \bigg|$$

Define (relative) condition number:

$$c(x) = \left| \frac{xf'(x)}{f(x)} \right|$$

■ Roughly: (Forward error) ≤ (Condition number) * (Backward error)

Mixed-precision iterative refinement

Inner-loop of mixed-precision iterative refinement algorithm:

Single, $O(n^3) \Rightarrow \hat{x} = \text{Estimated solution to } Ax = b$ Double, $O(n^2) \Rightarrow \hat{r} \leftarrow b - A \cdot \hat{x}$ Single, $O(n^2) \Rightarrow \text{Solve } A \cdot \hat{d} = \hat{r}$ Double, $O(n) \Rightarrow \hat{x}^{(\text{improved})} \leftarrow \hat{x} + \hat{d}$ Theorem: Repeated iterative refinement converges by η at each stage, and $x^{(t)} \equiv \text{Estimate at iteration } t$, in precision ϵ $r^{(t)} \equiv \text{Residual, in precision } \epsilon^2$ $\eta \equiv \epsilon \cdot || |A^{-1}| \cdot |\hat{L}| \cdot |\hat{U}| ||_{\infty} < 1$ $\frac{||x^{(t)} - x||_{\infty}}{||x||_{\infty}} \rightarrow O(\epsilon) \iff \text{Independent of } \kappa(A)!$

Η

Obstacles to fast and stable parallel numerical algorithms

- Algorithms that work on small problems may fail at large sizes
 - Round-off accumulates
 - Condition number increases
 - Probability of "random instability" increases
- Fast (parallel) algorithm may be less stable ⇒ trade-off

IEEE formats

Format	Total bits	Exp. bits (e _{min} , e _{max})	<i>t</i> -1	3	Fortran / C
Single	32	8 (-125, 128)	23	6 × 10 ⁻⁸	REAL*4 float
Double	64	11 (-1021, 1024)	52	10 ⁻¹⁶	REAL*8 double
Extended (Intel)	80	15 (-16381, 16384)	64	5 × 10 ⁻²⁰	REAL*10 long double

Reasoning about memory hierarchies

Η

Recall: Memory hierarchies.

Cost of accessing data depends on where data lives.

Memory hierarchies reflect growing processor-memory speed gap.

Dealing with high memory latency

- Use caches as fast memory
 - Store data that will be reused many times: **temporal locality**
 - Save chunks of contiguous data: **spatial locality**
- Exploit fact that bandwidth improves faster than latency: **prefetch**
- Modern processors automate cache management
 - All loads cached automatically (LRU), and loaded in chunks (*cache line size*)
 - Typical to have a hardware prefetcher that detects simple patterns

A simple model of memory

 $m \equiv$ No. words moved from slow to fast memory

$$f \equiv$$
 No. of flops

$$\alpha \equiv$$
 Time per slow memory op.

$$\tau \equiv \text{Time per flop}$$

$$q \equiv \frac{f}{m} = \text{Flop-to-mop ratio} \leftarrow \text{Computational intensity}$$

$$T = f \cdot \tau + m \cdot \alpha = f \cdot \tau \cdot \left(1 + \frac{\alpha}{\tau} \cdot \frac{1}{q}\right)$$

Machine balance

— I K A I

Example: Matrix-vector multiply

// Implements $y \leftarrow y + A \cdot x$

for $i \leftarrow 1$ to n do

for $j \leftarrow 1$ to n do $y_i \leftarrow y_i + a_{ij} \cdot x_j$

Example: Matrix-vector multiply

// Implements $y \leftarrow y + A \cdot x$ // Read x (into fast memory) // Read yfor $i \leftarrow 1$ to n do // Read $a_{i,\star}$ for $j \leftarrow 1$ to n do $y_i \leftarrow y_i + a_{ij} \cdot x_j$ // Write y to slow memory

Example: Matrix-vector multiply

 $// \text{ Implements } y \leftarrow y + A \cdot x$ // Read x (into fast memory) // Read y $for i \leftarrow 1 \text{ to } n \text{ do}$ $// \text{ Read } a_{i,\star}$ $for j \leftarrow 1 \text{ to } n \text{ do}$ $y_i \leftarrow y_i + a_{ij} \cdot x_j$ // Write y to slow memory T

$$f = 2n^{2}$$

$$m = 3n + n^{2}$$

$$q \approx 2$$

$$\downarrow$$

$$\frac{T}{\cdot \tau} \approx 1 + \frac{\alpha}{\tau} \cdot \frac{1}{2}$$

Machine balance, α / τ

[See my thesis]

Empirically-derived sustainable machine balance

Simplifying assumptions

- Ignored flop/mop parallelism within processor \rightarrow drop arithmetic term
- Assumed fast memory large enough to hold vectors
- Assumed no-cost fast memory access
- Memory latency is constant, charged per word
 - Ignored cache lines / block transfers
 - Ignored bandwidth

Predictive accuracy of this model

Naive matrix-matrix multiply

// Implements $C \leftarrow C + A \cdot B$ for $i \leftarrow 1$ to n do

for $j \leftarrow 1$ to n do

H

for
$$k \leftarrow 1$$
 to n do
 $c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$
Best case $\Rightarrow m \geq 4n^2$
 $\frac{T}{f \cdot \tau} \geq 1 + \frac{\alpha}{\tau} \cdot \frac{2}{n}$

Naive matrix-matrix multiply

 $\begin{array}{l} // \text{ Implements } C \leftarrow C + A \cdot B \\ \text{for } i \leftarrow 1 \text{ to } n \text{ do} \\ // \text{ Read row } a_{i,\star} \\ \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\ // \text{ Read col } b_{\star,j} \\ // \text{ Read } c_{i,j} \\ \text{ for } k \leftarrow 1 \text{ to } n \text{ do} \\ c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj} \\ // \text{ Write } c_{ij} \text{ to slow memory} \end{array}$

$$f = 2n^{3}$$
$$m = n^{3} + 3n^{2}$$
$$\frac{T}{f \cdot \tau} \approx 1 + \frac{\alpha}{\tau} \cdot \frac{1}{2}$$

23

Blocked (tiled) matrix multiply

// Let I, J, K = blocks of b indices $for I \leftarrow \text{index blocks 1 to } \frac{n}{b} \text{ do}$ $for J \leftarrow \text{index blocks 1 to } \frac{n}{b} \text{ do}$ $// \text{ Read block } C_{IJ}$ $for K \leftarrow \text{index blocks 1 to } \frac{n}{b} \text{ do}$ $// \text{ Read block } A_{IK}$ $// \text{ Read block } B_{KJ}$ $B_{IJ} \leftarrow c_{IJ} + A_{IK} \cdot B_{KJ}$ $// \text{ Write } C_{IJ} \text{ to slow memory}$

Ħ

Blocked (tiled) matrix multiply

B

Architectural implications

Arch.	≈ α / τ	М	M	\equiv	Size of fast mem.	
AICH.	~ 0 / 1	101	$3b^2$	<	M	
Ultra 2i	25	1.5 MB		\approx		
Ultra 3	14	460 KB	_			
Pentium 3	6.3	94 KB	M	\geq	$3q^2$	
P-3M	10	240 KB				
Power3	8.8	180 KB				
Power4	15	527 KB	$1 + \frac{\alpha}{\tau} \cdot \frac{1}{q}$	<	1.1	
Itanium 1	36	3.0 MB			$300\left(\frac{\alpha}{\tau}\right)^2$	
Itanium 2	5.5	71 KB		~	$\int \int $	
"M" in bytes to 2 digits; assumes 8-byte (double-precision) words						

26

B

Can we do better?

$$b = O\left(\sqrt{M}\right)$$
$$\implies m = O\left(\frac{n^3}{b}\right) = O\left(\frac{n^3}{\sqrt{M}}\right)$$

Bounding amount of I/O possible

- Consider a schedule in phases of exactly *M* transfers each (except last)
- Definition: *c(i,j)* is **live** during phase *p* if ...
 - ... for some k, we compute a(i,k) * b(k, j);
 - and some partial sum of *c(i, j)* is either in cache or moved to main memory
- At most 2**M* live *c(i, j)* in phase *p*
- At most 2**M* distinct elements of *A* in cache during phase *p*; same for B
 - Either in cache at beginning or moved to cache during phase
 - Let A_p be set of elements in cache during phase p; same for B_p

How many multiplies in phase p?

- Let $S_{\rho,+}$ = set of rows of A with $M^{1/2}$ or more elements in A_{ρ}
- Let $S_{p,-}$ = set of rows of A with fewer
- $|S_{p,+}| \le 2^* M^{1/2}$
- Consider rows in $S_{\rho,+}$:
 - Operation "*a(i, :)* × *B*" touches each element of *B* only once
 - So, no. of scalar multiplies $\leq |S_{p,+}| * (2^*M) = 4^*M^{3/2}$
- For rows in $S_{p,-}$, consider that " $c(i,j) = row \times col$ "
 - Thus, (# multiplies) \leq (no. live) x (max row len) $\leq 2^* M^{3/2}$

Final bound on multiplies

Total no. of multiplies $= n^3$ No. of multiplies per phase $\leq 6M^{\frac{3}{2}}$ No. of phases $\geq \left[\frac{n^3}{6M^{\frac{3}{2}}}\right]$ Total no. of words transferred $\geq M \cdot \left(\frac{n^3}{6M^{\frac{3}{2}}} - 1\right)$ $= \frac{n^3}{6\sqrt{M}} - M$

Can we do better? Nope.

- **Theorem** [Hong and Kung (1981)]: Any schedule of conventional matrix multiply must transfer $\Omega(n^3 / \sqrt{M})$ words between slow and fast memory, where $M < n^2 / 6$.
- We did intuitive proof by Toledo (1999)
- Historical note: Rutledge & Rubinstein (1951-52)
- So cached block matrix multiply is **asymptotically optimal**.

$$b = O\left(\sqrt{M}\right) \implies m = O\left(\frac{n^3}{b}\right) = O\left(\frac{n^3}{\sqrt{M}}\right)$$

What happens in practice?

- Experiment: One-level cache-blocked matrix multiply
- Block size chosen as square, by exhaustive search over sizes up to 64

Tiled MM on AMD Opteron 2.2 GHz (4.4 Gflop/s peak), 1 MB L2 cache

We evidently still have a lot of work to do...

Η

Administrivia

Two joint classes with CS 8803 SC

- **Tues 2/19**: Floating-point issues in parallel computing by me
- **Tues 2/26**: GPGPUs by Prof. Hyesoon Kim
 - Scribe?
- Both classes meet in Klaus 1116E

Homework 1: Parallel conjugate gradients

- **Extension**: Due Wednesday 2/27 @ 8:30 am
- Implement a parallel solver for Ax = b (serial C version provided)
 - Evaluate on three matrices: 27-pt stencil, and two application matrices
 - Simplified:" No preconditioning

Performance models to understand scalability of your implementation

- Make measurements
- Build predictive models
- Collaboration encouraged: Compare programming models or platforms

Administrative stuff

- **New room** (dumpier, but cozier?): College of Computing Building (CCB) 101
- **Accounts**: Apparently, you already have them
- Front-end login node: **ccil.cc.gatech.edu** (CoC Unix account)
 - We "own" warp43—warp56
 - Some docs (MPI): <u>http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html</u>
 - **Sign-up** for mailing list: <u>https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab</u>

Projects

- Your goal should be to do something useful, interesting, and/or publishable!
 - Something you're already working on, suitably adapted for this course
 - Faculty-sponsored/mentored
 - Collaborations encouraged

My criteria for "approving" your project

- Relevant to this course:" Many themes, so think (and "do") broadly
 - Parallelism and architectures
 - Numerical algorithms
 - Programming models
 - Performance modeling/analysis

General styles of projects

- Theoretical: Prove something hard (high risk)
- Experimental:
 - Parallelize something
 - Take existing parallel program, and improve it using models & experiments
 - Evaluate algorithm, architecture, or programming model

Examples

- Anything of interest to a faculty member/project outside CoC
- Parallel sparse triple product (*R***A***R*^T, used in multigrid)
- Future FFT
- Out-of-core or I/O-intensive data analysis and algorithms
- Block iterative solvers (convergence & performance trade-offs)
- Sparse LU
- Data structures and algorithms (trees, graphs)
- Discrete-event approaches to continuous systems simulation
- Automated performance analysis and modeling, tuning
- "Unconventional," but related
 - Distributed deadlock detection for MPI
 - UPC language extensions (dynamic block sizes)
 - Exact linear algebra

"In conclusion..."

Backup slides