
Single processor tuning (1/2)

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.14] Thursday, February 21, 2008

1

Today’s sources

CS 267 (Yelick @ UCB; Spring 2007)

“A survey of out-of-core algorithms in numerical linear algebra,” by Toledo (1999)

“A family of high-performance matrix multiplication algorithms,” by Gunnels, et al. (2006)

“On reducing TLB misses in matrix multiplication,” by Goto and van de Geijn (2002)

“Is search really necessary to generate high-performance BLAS?” by Yotov, et al. (2005)

2

Review: Accuracy, stability, and
parallelism

3

The impact of parallelism on
numerical algorithms

Larger problems magnify errors: Round-off, ill-conditioning, instabilities

Reproducibility: a + (b + c) ≠ (a + b) + c

Fast parallel algorithm may be much less stable than fast serial algorithm

Flops cheaper than communication

Speeds at different precisions may vary significantly [e.g., SSEk, Cell]

Perils of arithmetic heterogenity, e.g., CPU vs. GPU support of IEEE

4

Mixed (forward-backward) stability

Computed answer “near” exact solution of a nearby problem

∆x,∆y : ŷ + ∆y = f(x + ∆x)

x

x + ∆x

y = f(x)

ŷ

f(x + ∆x)

∆y

5

Conditioning: Relating forward and
backward error

Define (relative) condition number:

Roughly: (Forward error) ≤ (Condition number) * (Backward error)

c(x) =
∣∣∣∣
xf ′(x)
f(x)

∣∣∣∣

∣∣∣∣
ŷ − y

y

∣∣∣∣ !
∣∣∣∣
xf ′(x)
f(x)

∣∣∣∣ ·
∣∣∣∣
∆x

x

∣∣∣∣

6

Mixed-precision iterative refinement

Inner-loop of mixed-precision iterative refinement algorithm:

Theorem: Repeated iterative refinement converges by η at each stage, and

⇐ Independent of κ(A)!

x̂ = Estimated solution to Ax = b

r̂ ← b−A · x̂

Solve A · d̂ = r̂

x̂(improved) ← x̂ + d̂

Single, O(n3) ⇒
Double, O(n2) ⇒
Single, O(n2) ⇒
Double, O(n) ⇒

x(t) ≡ Estimate at iteration t, in precision ε

r(t) ≡ Residual, in precision ε2

η ≡ ε · || |A−1| · |L̂| · |Û | ||∞ < 1
||x(t) − x||∞

||x||∞
→ O(ε)

7

Obstacles to fast and stable parallel
numerical algorithms

Algorithms that work on small problems may fail at large sizes

Round-off accumulates

Condition number increases

Probability of “random instability” increases

Fast (parallel) algorithm may be less stable ⇒ trade-off

8

±

−125 = emin ≤ e ≤ emax = 128

0 ≤ m < 224 ≈ 16 million

y = ± m × 2e−t

y "= 0 =⇒ m ≥ 2t−1
“Normalized”

9

IEEE formats

±

emin ≤ e ≤ emax 0 ≤ m < 2t

Format Total bits
Exp. bits

(emin, emax)
t-1 ε Fortran / C

Single

Double

Extended
(Intel)

32
8

(-125, 128)
23 6 × 10-8 REAL*4

float

64
11

(-1021, 1024)
52 10-16 REAL*8

double

80
15

(-16381, 16384)
64 5 × 10-20 REAL*10

long double

10

Reasoning about memory
hierarchies

11

on-chip
cacheregisters

datapath

control

processor

Second
level
cache
(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

TBGBMBKBBSize

10sec10ms100ns10ns1nsCost

Recall: Memory hierarchies.
Cost of accessing data depends on where data lives.

12

Memory hierarchies reflect growing
processor-memory speed gap.

13

Dealing with high memory latency

Use caches as fast memory

Store data that will be reused many times: temporal locality

Save chunks of contiguous data: spatial locality

Exploit fact that bandwidth improves faster than latency: prefetch

Modern processors automate cache management

All loads cached automatically (LRU), and loaded in chunks (cache line size)

Typical to have a hardware prefetcher that detects simple patterns

14

A simple model of memory

Machine balance

⇐ Computational intensity

m ≡ No. words moved from slow to fast memory
f ≡ No. of flops
α ≡ Time per slow memory op.
τ ≡ Time per flop

q ≡ f

m
= Flop-to-mop ratio

T = f · τ + m · α = f · τ ·
(

1 +
α

τ
· 1
q

)

15

Example: Matrix-vector multiply

← + *

// Implements y ← y + A · x

for i← 1 to n do

for j ← 1 to n do
yi ← yi + aij · xj

16

Example: Matrix-vector multiply
// Implements y ← y + A · x

// Read x (into fast memory)
// Read y

for i← 1 to n do
// Read ai,!

for j ← 1 to n do
yi ← yi + aij · xj

// Write y to slow memory

← + *

17

Example: Matrix-vector multiply
// Implements y ← y + A · x

// Read x (into fast memory)
// Read y

for i← 1 to n do
// Read ai,!

for j ← 1 to n do
yi ← yi + aij · xj

// Write y to slow memory

f = 2n2

m = 3n + n2

q ≈ 2
⇓

T

f · τ
≈ 1 +

α

τ
· 1
2

← + *

18

Machine balance, α / τ
[See my thesis]

0

5

10

15

20

25

30

35

40

Ultra 2i Ultra 3 Pentium 3 3M Power3 Power 4 Itanium 1

Empirically-derived sustainable machine balance

α
/
τ

19

Simplifying assumptions

Ignored flop/mop parallelism within processor → drop arithmetic term

Assumed fast memory large enough to hold vectors

Assumed no-cost fast memory access

Memory latency is constant, charged per word

Ignored cache lines / block transfers

Ignored bandwidth

20

Predictive accuracy of this model

0

375

750

1,125

1,500

Ultra 2i Ultra 3 P3 P3M Power3 Power4 Itanium 1Itanium 2

M
flo

p
/s

Model Measured

21

Naive matrix-matrix multiply

// Implements C ← C + A · B

for i← 1 to n do

for j ← 1 to n do

for k ← 1 to n do
cij ← cij + aik · bkj

Best case ⇒
f = 2n3

m ≥ 4n2

T

f · τ
≥ 1 +

α

τ
· 2
n

22

Naive matrix-matrix multiply

// Implements C ← C + A · B

for i← 1 to n do
// Read row ai,!

for j ← 1 to n do
// Read col b!,j

// Read ci,j

for k ← 1 to n do
cij ← cij + aik · bkj

// Write cij to slow memory

f = 2n3

m = n3 + 3n2

T

f · τ
≈ 1 +

α

τ
· 1
2

23

Blocked (tiled) matrix multiply

// Let I, J, K = blocks of b indices

for I ← index blocks 1 to
n

b
do

for J ← index blocks 1 to
n

b
do

// Read block CIJ

for K ← index blocks 1 to
n

b
do

// Read block AIK

// Read block BKJ

BIJ ← cIJ + AIK · BKJ

// Write CIJ to slow memory

I

K

K

J

24

Blocked (tiled) matrix multiply

m ≈ n3

b
=⇒ q ≈ b

T

f · τ
= 1 +

α

τ
· 1
b

25

Architectural implications

Arch. ≈ α / τ M

Ultra 2i

Ultra 3

Pentium 3

P-3M

Power3

Power4

Itanium 1

Itanium 2

25 1.5 MB

14 460 KB

6.3 94 KB

10 240 KB

8.8 180 KB

15 527 KB

36 3.0 MB

5.5 71 KB

M ≡ Size of fast mem.
3b2 ≤ M

q ≈ b

⇓
M ≥ 3q2

1 +
α

τ
· 1
q

< 1.1

=⇒ M ≥ 300
(α

τ

)2

“M” in bytes to 2 digits; assumes 8-byte (double-precision) words

26

Can we do better?

b = O
(√

M
)

=⇒ m = O

(
n3

b

)
= O

(
n3

√
M

)

27

Bounding amount of I/O possible

Consider a schedule in phases of exactly M transfers each (except last)

Definition: c(i,j) is live during phase p if ...

… for some k, we compute a(i,k) * b(k, j);

and some partial sum of c(i, j) is either in cache or moved to main memory

At most 2*M live c(i, j) in phase p

At most 2*M distinct elements of A in cache during phase p; same for B

Either in cache at beginning or moved to cache during phase

Let Ap be set of elements in cache during phase p; same for Bp

28

How many multiplies in phase p?

Let Sp,+ = set of rows of A with M1/2 or more elements in Ap

Let Sp,- = set of rows of A with fewer

|Sp,+| ≤ 2*M1/2

Consider rows in Sp,+:

Operation “a(i, :) × B” touches each element of B only once

So, no. of scalar multiplies ≤ |Sp,+| * (2*M) = 4*M3/2

For rows in Sp,-, consider that “c(i,j) = row x col”

Thus, (# multiplies) ≤ (no. live) x (max row len) ≤ 2*M3/2

29

Final bound on multiplies

Total no. of multiplies = n3

No. of multiplies per phase ≤ 6M
3
2

No. of phases ≥
⌈

n3

6M
3
2

⌉

Total no. of words transferred ≥ M ·
(

n3

6M
3
2
− 1

)

=
n3

6
√

M
−M

30

Can we do better? Nope.

Theorem [Hong and Kung (1981)]: Any schedule of
conventional matrix multiply must transfer Ω(n3 / √M) words
between slow and fast memory, where M < n2 / 6.

We did intuitive proof by Toledo (1999)

Historical note: Rutledge & Rubinstein (1951—52)

So cached block matrix multiply is asymptotically optimal.

b = O
(√

M
)

=⇒ m = O

(
n3

b

)
= O

(
n3

√
M

)

31

What happens in practice?

Experiment: One-level cache-blocked matrix multiply

Block size chosen as square, by exhaustive search over sizes up to 64

32

Tiled MM on AMD Opteron 2.2 GHz (4.4 Gflop/s peak), 1 MB L2 cache

We evidently still have a lot of work to do...

33

Administrivia

34

Two joint classes with CS 8803 SC

Tues 2/19: Floating-point issues in parallel computing by me

Tues 2/26: GPGPUs by Prof. Hyesoon Kim

Scribe?

Both classes meet in Klaus 1116E

35

Homework 1:
Parallel conjugate gradients

Extension: Due Wednesday 2/27 @ 8:30 am

Implement a parallel solver for Ax = b (serial C version provided)

Evaluate on three matrices: 27-pt stencil, and two application matrices

“Simplified:” No preconditioning

Performance models to understand scalability of your implementation

Make measurements

Build predictive models

Collaboration encouraged: Compare programming models or platforms

36

Administrative stuff

New room (dumpier, but cozier?): College of Computing Building (CCB) 101

Accounts: Apparently, you already have them

Front-end login node: ccil.cc.gatech.edu (CoC Unix account)

We “own” warp43—warp56

Some docs (MPI): http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html

Sign-up for mailing list: https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

37

http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

Projects

Your goal should be to do something useful, interesting, and/or publishable!

Something you’re already working on, suitably adapted for this course

Faculty-sponsored/mentored

Collaborations encouraged

38

My criteria for “approving” your
project

“Relevant to this course:” Many themes, so think (and “do”) broadly

Parallelism and architectures

Numerical algorithms

Programming models

Performance modeling/analysis

39

General styles of projects

Theoretical: Prove something hard (high risk)

Experimental:

Parallelize something

Take existing parallel program, and improve it using models & experiments

Evaluate algorithm, architecture, or programming model

40

Anything of interest to a faculty member/project outside CoC

Parallel sparse triple product (R*A*RT, used in multigrid)

Future FFT

Out-of-core or I/O-intensive data analysis and algorithms

Block iterative solvers (convergence & performance trade-offs)

Sparse LU

Data structures and algorithms (trees, graphs)

Discrete-event approaches to continuous systems simulation

Automated performance analysis and modeling, tuning

“Unconventional,” but related

Distributed deadlock detection for MPI

UPC language extensions (dynamic block sizes)

Exact linear algebra

Examples

41

“In conclusion…”

42

Backup slides

43

