
Interactions between parallelism
and numerical stability, accuracy

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.13] Tuesday, February 19, 2008

1

Source: Dubey, et al., of Intel (2005)

2

Problem: Seamless image cloning.
(Source: Pérez, et al., SIGGRAPH 2003)

3

… then reconstruct.
(Source: Pérez, et al., SIGGRAPH 2003)

4

Review: Multigrid

5

Exploiting structure to obtain fast
algorithms for 2-D Poisson

Dense LU: Assume no structure ⇒ O(n6)

Sparse LU: Sparsity ⇒ O(n3), need extra memory, hard to parallize

CG: Symmetric positive definite ⇒ O(n3), a little extra memory

RB SOR: Fixed sparsity pattern ⇒ O(n3), no extra memory, easy to parallelize

FFT: Eigendecomposition ⇒ O(n2 log n)

Multigrid: Eigendecomposition ⇒ O(n2) [Optimal!]

6

Problem: Slow convergence
RHS True solution

Best possible
5-step

5 steps of Jacobi

7

Error “frequencies”

ε(t) = Rt
w · ε(0) = (I − w

2
ZΛZT)t · ε(0)

= Z
(
I − w

2
Λ

)t
ZT · ε(0)

⇓

ZT · ε(t) =
(
I − w

2
Λ

)t
ZT · ε(0)

(
ZT · ε(t)

)

j
=

(
I − w

2
Λ

)t

jj

(
ZT · ε(0)

)

j

8

Initial error
 “Rough”
 Lots of high frequency components
 Norm = 1.65

Error after 1 weighted Jacobi step
 “Smoother”
 Less high frequency component
 Norm = 1.06

Error after 2 weighted Jacobi steps
 “Smooth”
 Little high frequency component
 Norm = .92,
 won’t decrease much more

9

“Multigrids” in 2-D

P (3)

P (i) = Problem on
(
2i + 1

)
×

(
2i + 1

)
grid

T (i)x(i) = b(i)

P (1)P (2)

10

Full multigrid algorithm

FMG
(
b(k), x(k)

)

x(1) ← Exact solution to P (1)

for i = 2 to k do
x(i) ← MGV

(
b(i), L(i−1)

(
x(i−1)

))

k=2 3 4 5

11

Interactions between parallelism
and numerical stability, accuracy

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.13] Tuesday, February 19, 2008

12

Example 1: When single-precision is
faster than double

On STI Cell

SPEED(single) = 14x SPEED(double): 204.8 Gflop/s vs. 14.6 Gflop/s

SPEs fully IEEE-compliant for double, but only support round-to-zero in single

On regular CPUs with SIMD units

SPEED(single) ~ 2x SPEED(double)

SSE2: S(single) = 4 flops / cycle vs. S(double) = 2 flops/cycle

PowerPC Altivec: S(single) = 8 flops / cycle; no double (4 flops / cycle)

On a GPU, might not have double-precision support

13

Example 2: Parallelism and floating-
point semantics: Bisection on GPUs

Bisection algorithm computes eigenvalues of symmetric tridiagonal matrix

Inner-kernel is a routine, Count(x), which counts the number of eigenvalues
less than x

Correctness 1: Count(x) must be “monotonic”

Correctness 2: (Some approaches) IEEE FP-compliance

ATI Radeon X1900 XT GPU does not strictly adhere to IEEE floating-point
standard, causing error in some cases

But workaround possible

14

The impact of parallelism on
numerical algorithms

Larger problems magnify errors: Round-off, ill-conditioning, instabilities

Reproducibility: a + (b + c) ≠ (a + b) + c

Fast parallel algorithm may be much less stable than fast serial algorithm

Flops cheaper than communication

Speeds at different precisions may vary significantly [e.g., SSEk, Cell]

Perils of arithmetic heterogenity, e.g., CPU vs. GPU support of IEEE

15

A computational paradigm

Use fast algorithm that may be unstable (or “less” stable)

Check result at the end

If needed, re-run or fix-up using slow-but-safe algorithm

16

Sources for today’s material

Applied Numerical Linear Algebra, by Demmel

Accuracy and stability of numerical algorithms, by Higham

“Trading off parallelism and numerical stability,” by Demmel (1992)

“Exploiting the performance of 32 bit arithmetic in obtaining 64 bit accuracy,”
by Langou, et al. (2006)

“Using GPUs to accelerate the bisection algorithm for finding eigenvalues of
symmetric tridiagonal matrices,” by Volkov and Demmel (2007)

CS 267 (Demmel, UCB)

Plamen Koev (NCSU)

17

Reasoning about accuracy and
stability

18

Sources of error in a computation

Uncertainty in input data, due to measurements, earlier computations, ...

Truncation errors, due to algorithmic approximations

Rounding errors, due to finite-precision arithmetic

Today’s focus: Rounding error analysis

19

Accuracy vs. precision

Accuracy: Absolute or relative error in computed quantity

Precision: Accuracy of basic operations (+, -, *, /, …)

Accuracy not limited by precision!

Can simulate arbitrarily higher precision with a given precision

Cost: Speed

20

A model of floating-point arithmetic

Basic operations (+, -, *, /, …) satisfy:

ε = “Unit round-off” or “machine/format precision”

IEEE 754 single-precision (32-bit) ~ 10-8

Double (64-bit) ~ 10-16

Extended (80-bit on Intel) ~ 10-20

Fused multiply-add: Two ops with only one error

fl(a op b) = (a op b)(1 + δ), |δ| ≤ ε

21

Error analysis notation

Desired computation:

What our algorithm actually computes:

ŷ = f̂(x)

y = f(x)

22

Measuring errors

Absolute error

Relative error

(Forward) Stability: “Small” bounds on error

For vectors and matrices, use “norms”

|x̂− x|

|x̂− x|
|x|

||x||2 ≡
√∑

i

x2
i ||x||1 ≡

∑

i

|xi| ||x||∞ ≡ max
i

|xi|

23

x

y = f(x)

Input space
Output space

Forward error

ŷ

24

Forward vs. backward errors

Forward error analysis bounds

Backward error analysis bounds

Numerically stable: Bounds are “small”

|ŷ − y| or
|ŷ − y|

|y|

∆x : ŷ = f(x + ∆x)

25

x

x + ∆x

y = f(x)

ŷ = f(x + ∆x)

Input space
Output space

Forward error

Backward error

26

Mixed (forward-backward) stability

Computed answer “near” exact solution of a nearby problem

∆x,∆y : ŷ + ∆y = f(x + ∆x)

x

x + ∆x

y = f(x)

ŷ

f(x + ∆x)

∆y

27

Conditioning: Relating forward and
backward error

ŷ = f(x + ∆x) ≈ f(x) + f ′(x)∆x = y + f ′(x)∆x

=⇒ ŷ − y ≈ f ′(x)∆x

ŷ − y

y
≈ f ′(x)∆x

f(x)
· x

x

⇓∣∣∣∣
ŷ − y

y

∣∣∣∣ !
∣∣∣∣
xf ′(x)
f(x)

∣∣∣∣ ·
∣∣∣∣
∆x

x

∣∣∣∣

28

Conditioning: Relating forward and
backward error

Define (relative) condition number:

Roughly: (Forward error) ≤ (Condition number) * (Backward error)

c(x) =
∣∣∣∣
xf ′(x)
f(x)

∣∣∣∣

∣∣∣∣
ŷ − y

y

∣∣∣∣ !
∣∣∣∣
xf ′(x)
f(x)

∣∣∣∣ ·
∣∣∣∣
∆x

x

∣∣∣∣

29

Comments on conditioning

Rule-of-thumb: (Forward error) ≤ (Condition number) * (Backward error)

Condition number is problem dependent

Backward stability ⇒ Forward stability, but not vice-versa

Ill-conditioned problem can have large forward error

c(x) =
∣∣∣∣
xf ′(x)
f(x)

∣∣∣∣

30

Example: Condition number for
solving linear systems

Condition number

Ax = b

(A + ∆A) · x̂ = b + ∆b

⇓
||∆x||
||x̂|| ≤ ||A−1|| · ||A||︸ ︷︷ ︸

≡κ(A)

·
(

||∆A||
||A|| +

||∆b||
||A|| · ||x̂||

)

31

Example: Condition number for
solving linear systems

−A · x = −b
(A + ∆A) · x̂ = b + ∆b

A · (x̂− x) + ∆A · x̂ = ∆b
⇓

∆x = A−1 · (∆b−∆A · x̂)
||∆x|| ≤ ||A−1|| · (||∆A|| · ||x̂|| + ||∆b||)
||∆x||
||x̂|| ≤ ||A−1|| ·

(
||∆A|| + ||∆b||

||x̂||

)

⇓
||∆x||
||x̂|| ≤ ||A−1|| · ||A|| ·

(
||∆A||
||A|| + ||∆b||

||A||·||x̂||

)

32

Subtractive cancellation

May lose accuracy when subtracting nearly equal values

.123456789xxx
− .123456789yyy

.000000000zzz

Example:
12 ⇒ 3 significant digits

â ≈ a > 0, b̂ ≈ b > 0 =⇒ â + b̂ ≈ a + b

â · b̂ ≈ a · b

â/b̂ ≈ a/b

33

Example: Subtractive cancellation

f(x) ≡ 1− cos x

x2
<

1
2

∀x $= 0

 0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x / π

f(x
)

34

Example: Subtractive cancellation

Suppose x = 1.2 × 10-5 and precision = 10 digits:

“1 - c” is exact, but result is same size as error in c

c ≡ cos(1.2× 10−5) ≈ 0.999 999 999 9
1− c = 0.000 000 000 1 = 10−10

1− c

x2
=

10−10

1.44× 10−10
= 0.6944 . . .

f(x) ≡ 1− cos x

x2
<

1
2

∀x $= 0

35

Cancellation magnifies errors

â ≡ a · (1 + ∆a)

b̂ ≡ b · (1 + ∆b)

ŷ ≡ â− b̂∣∣∣∣
ŷ − y

y

∣∣∣∣ =
∣∣∣∣
−a∆a− b∆b

a− b

∣∣∣∣

≤ max(|∆a|, |∆b|) · |a| + |b|
|a− b|

36

Cancellation not always bad!

Operands may be exact (e.g., initial data)

Cancellation may be symptomatic of ill-conditioning

Effect may be irrelevant, e.g., x + (y - z) is safe if

0 < y ≈ z " x

37

A few bad errors can ruin a
computation

Instability can often be traced to just a few insidious errors, not just
accumulation of lots of error

10

1,000

10,000

1,000,000

2.593743 1.25×10-1

2.717051 1.23×10-3

2.718597 3.15×10-4

2.595227 1.23×10-1

n f̂n |f̂n − e|

e ≡ lim
n→∞

(
1 +

1
n

)n

= 2.71828 . . .

38

Rounding errors can be beneficial

A has 3 eigenvalues: 0, 0.4394…, 1.161…

Eigenvalue 0 has eigenvector [1, 1, 1]T

Consider power method with initial guess [1, 1, 1]T

1-step in exact arithmetic ⇒ 0, so no eigenpair information

With rounding, get principal eigenvector in ~ 40 steps

A =

0.4 −0.6 0.2
−0.3 0.7 −0.4
−0.1 −0.4 0.5

39

Non-overlapping expansion

a

b

a1 a2

b1 b2

40

Non-overlapping expansion

a

b

a1 a2

b1 b2

a1 a2 + b1

ŝ− a 0 b1

b20

a + b→ ŝ

⇐ Higher accuracy in fixed precision(ŝ, ê) : ŝ + ê = a + b

b− (ŝ− a)→ ê

41

Misconceptions [Higham]

Cancellation is always bad

Rounding errors can overwhelm only for many accumulations

Rounding errors cannot be beneficial

Accuracy always limited by precision

Final computed answer cannot be more accurate than intermediate values

Short computation w/o cancellation, underflow, and overflow is accurate

Increasing precision always increases accuracy

42

Designing stable algorithms

Avoid subtracting quantities contaminated by error if possible

Minimize size of intermediate quantities

Look for formulations that are mathematically but not numerically equivalent

Update paradigm: new = old + correction

Use well-conditioned transformations, e.g., multiply by orthogonal matrices

Avoid unnecessary overflow and underflow

43

Example 1: Solve Ax = b using
mixed-precision iterative refinement

44

When single-precision is faster than
double

On Cell

SPEED(single) = 14x SPEED(double): 204.8 Gflop/s vs. 14.6 Gflop/s

SPEs fully IEEE-compliant for double, but only support round-to-zero in single

On regular CPUs with SIMD units

SPEED(single) ~ 2x SPEED(double)

SSE2: S(single) = 4 flops / cycle vs. S(double) = 2 flops/cycle

PowerPC Altivec: S(single) = 8 flops / cycle; no double (4 flops / cycle)

On a GPU, might not have double-precision support

45

Improving an estimate using
Newton’s method

f(x) = 0

x(t+1) ← x(t) − f(x(t))
f ′(x(t))

⇓
f(x) = Ax− b

x(t+1) ← x(t) −A−1(A · x(t) − b)
⇓

d(t) ≡ x(t+1) − x(t) = A−1 · r(t)

46

One step of “iterative refinement”

Inner loop of iterative refinement algorithm

d(t) ≡ x(t+1) − x(t) = A−1 · r(t)

x̂ = Estimated solution to Ax = b

r̂ ← b−A · x̂

Solve A · d̂ = r̂

x̂(improved) ← x̂ + d̂

47

Mixed-precision iterative refinement

Theorem: Given a computed LU factorization of A, and

Then repeated iterative refinement converges by η at each stage, and

Independent of κ(A)!
||x(t) − x||∞

||x||∞
→ O(ε)

x̂ = Estimate, in precision ε

r̂ = Residual, in precision ε2

η = ε · || |A−1| · |L̂| · |Û | ||∞ < 1

48

When single-precision is much
faster than double

Compute a solution in single-precision, e.g., LU ⇒ O(n3) single-flops

Apply one-step of iterative refinement

Compute residual in double ⇒ O(n2) double-flops

Solve in single, e.g., reuse LU factors ⇒ O(n2) single-flops

Correct in double, round to single ⇒ O(n) double-flops

Matrix needs to be not-too-ill-conditioned

49

Source: Dongarra, et al. (2007)

50

Source: Dongarra, et al. (2007)

STI Cell

51

Fixed-precision iterative refinement

Theorem: If instead r computed in same precision ε, then

Compare to bound for the original computed solution using LU:

||x̂− x||∞
||x||∞

! 2n · κ(A) · ε

||x̂− x||∞
||x||∞

! 3n · || |A−1| · |L̂| · |Û | ||∞
||x||∞

· ε

52

Administrivia

53

Two joint classes with CS 8803 SC

Tues 2/19: Floating-point issues in parallel computing by me

Tues 2/26: GPGPUs by Prof. Hyesoon Kim

Both classes meet in Klaus 1116E

54

Administrative stuff

New room (dumpier, but cozier?): College of Computing Building (CCB) 101

Accounts: Apparently, you already have them

Front-end login node: ccil.cc.gatech.edu (CoC Unix account)

We “own” warp43—warp56

Some docs (MPI): http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html

Sign-up for mailing list: https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

55

http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

Homework 1:
Parallel conjugate gradients

Implement a parallel solver for Ax = b (serial C version provided)

Evaluate on three matrices: 27-pt stencil, and two application matrices

“Simplified:” No preconditioning

Bonus: Reorder, precondition

Performance models to understand scalability of your implementation

Make measurements

Build predictive models

Collaboration encouraged: Compare programming models or platforms

56

Parallelism and stability trade-offs

57

Obstacles to fast and stable parallel
numerical algorithms

Algorithms that work on small problems may fail at large sizes

Round-off accumulates

Condition number increases

Probability of “random instability” increases

Fast (parallel) algorithm may be less stable ⇒ trade-off

58

x̄ =
1
n

n∑

i=1

xi

σ(x) =
1

n− 1

n∑

i=1

(xi − x̄)2

Let σ̂(x) = computed σ(x),
and ε = machine precision.
then:

σ̂(x)− σ(x)
σ(x)

≤ (n + 3)ε + O
(
ε2

)

Round-off accumulates

59

100 101 102 103 104 105
100

101

102

103

104

n2

κ(
T n×

 n
)

Condition number of Tnxn increases

60

Random stabilities increase

If A is an n×n matrix selected at random [Edelman ’92]:

Let η = 10d⋅ε. Then if p processors all do plain LU on i.i.d. A matrices:

Pr

(
κ(A) >

1
η

)
= O(n

3
2 · η)

Prob. per sec. that instability occurs

∼ p · (speed in flop/s)
2
3n3

· n
3
2 · 10d · ε

61

Trading-off speed and stability:
Serial example

Conventional error bound for naïve matrix multiply

Bound for Strassen’s, O(nlog_2 7) ≈ O(n2.81)

|flnäıve(A · B)−A · B| ≤ n · ε · |A| · |B|

||flStrassen(A · B)−A · B||M ≤ O(n3.6) · ε · ||A||M · ||B||M

62

Trading-off speed and stability:
Parallel example

Consider A to be a dense symmetric positive definite matrix

Suppose triangular solve is slow

Conventional algorithm:

Fast “block LU” algorithm (no triangular solves)

A = L · U =

I 0 0

L21 I 0
L31 L32 I

 ·

U11 U12 U13

0 U22 U23

0 0 U33

⇒ O(ε) · (κ(A))
3
2

A = RT · R =

RT

11 0 0
RT

12 RT
22 0

RT
13 RT

23 RT
33

 ·

R11 R12 R13

0 R22 R23

0 0 R33

⇒ ||∆A|| = O(ε) · κ(A)

63

IEEE floating-point arithmetic

64

Floating-point number systems

Subset of reals of the form:

y = ± m × βe−t

Base
(radix)

Mantissa
(Significand)

Sign Exponent

Precision

Representation = Sign + 2 integers (m, e); t, β implicit

y ∈ F ⊂ R
0 ≤ m < βt

65

Normalization

Set leading digit of m implicitly

Guarantees unique representation of each value

Avoids storage of leading zeros

Get extra digit (bit) of precision

y ∈ F ⊂ R
0 ≤ m < βt

y = ± m × βe−t

m ≥ 2t−1

Normalization

66

IEEE 754 Standard [Kahan]

Base-2 representation with m “normalized”

y = ± m × 2e−t

y "= 0 =⇒ m ≥ 2t−1
“Normalized”

IEEE single precision: 32 bits, ε ≈ 6×10-8 (REAL / float)

±

−125 = emin ≤ e ≤ emax = 128

0 ≤ m < 224 ≈ 16 million

67

IEEE formats

±

emin ≤ e ≤ emax 0 ≤ m < 2t

Format Total bits
Exp. bits

(emin, emax)
t-1 ε Fortran / C

Single

Double

Extended
(Intel)

32
8

(-125, 128)
23 6 × 10-8 REAL*4

float

64
11

(-1021, 1024)
52 10-16 REAL*8

double

80
15

(-16381, 16384)
64 5 × 10-20 REAL*10

long double

68

±

−125 = emin ≤ e ≤ emax = 128

0 ≤ m < 224 ≈ 16 million

y = ± m × 2e−t

y "= 0 =⇒ m ≥ 2t−1
“Normalized”

69

Rules of arithmetic

Philosophy: As simple as possible

Correct rounding: Round exact value to nearest floating-point number

Round to nearest even, to break ties

Other modes: up, down, toward 0

Don’t actually need exact value to round correctly (!)

Applies to +, -, *, /, sqrt, conversion between formats ⇒ model holds

fl(a op b) = (a op b)(1 + δ), |δ| < ε

70

Exception handling

What happens when exact value is not a real number? Too large or small?

Overflow/underflow

Invalid, e.g., 0 / 0

Divide by zero

“Inexact”Inexact

Answer: Exception generated

Set flag and continue (default)

Trap to custom handler

71

Denormalized numbers (“denorms”)

Value exceeds overflow threshold or falls below underflow threshold

Underflow permits safely executing: if (a != b) then x = a / (a-b)

72

Other special values

Infinity (INF): Divide by zero

Not-a-number (NaN): 0 / 0; 0 * INF; INF - INF; INF / INF; sqrt(-1)

Operations involving NaNs generate NaNs (except “max”/”min”)

Can use to represent uninitialized or missing data

Quiet vs. signaling

73

Example 2: Fast and accurate
bisection on GPUs

74

Dense symmetric eigensolvers

Tridiagonal reduction — Transform A to T using, e.g., Householder: O(n3)

Solve Tv = λv

λ is eigenvalue for A; back-transform v to get corresponding eigenvector

T =

a1 b1

b1 a2 b2

b2 . .
. . .

. an−1 bn−1

bn−1 an

75

Bisection kernel: Count(x)

Bisection: Finds eigenvalues in a given interval [a, b) by “search”

Inner-loop of one algorithm for solving Tv = λv

⇐ Counts no. of eigenvalues of T less than xCount(x)
count← 0
d← 1
for i = 1 to n do

d← ai − x−
b2
i−1

d
if d < 0 then

count ← count + 1
return count

76

Bisection algorithm

= An eigenvalue [li, ui)
C(ui)− C(li)

Repeatedly subdivide intervals until each one contains 1 eigenvalue.

77

Multisection: Increase parallelism

Easiest parallelization:
Evaluate Count(x) on multiple intervals simultaneously, at cost of redundancy.

Same Count(.)

78

Correctness requires monotonicity

Count(x) must be monotonic for overall algorithm to work

Can modify Count(x) slightly to guarantee it is monotonic iff basic operations on
scalars (+, -, *, /) are monotonic

IEEE floating-point semantics guarantee monotonicity

...

d← ai − x−
b2
i−1

d
if d < 0 then count ← count + 1

...

79

80

“In conclusion…”

81

The impact of parallelism on
numerical algorithms

Larger problems magnify errors: Round-off, ill-conditioning, instabilities

Reproducibility: a + (b + c) ≠ (a + b) + c

Fast parallel algorithm may be much less stable than fast serial algorithm

Flops cheaper than communication

Speeds at different precisions may vary significantly [e.g., SSEk, Cell]

Perils of arithmetic heterogenity, e.g., CPU vs. GPU support of IEEE

82

Backup slides

83

A brief history of floating-point
[Slide from Demmel]

von Neumann and Goldstine (1947): “Can’t expect to solve most big [n>15]
systems without carrying many decimal digits [d>8], otherwise the computed
answer would be completely inaccurate.”

Turing (1949): Backward error analysis

Wilkinson (1961): Rediscovers and publicizes idea — Turing Award 1970

Kahan (late 1970s): IEEE 754 floating-point standard — Turing Award 1989

Motivated by many years of machines with slightly differing arithmetics

First implementation in Intel 8087

Nearly universally implemented

84

Recall: Condition number for Ax = b

Condition number

||∆x||
||x̂|| ≤ ||A−1|| · ||A||︸ ︷︷ ︸

≡κ(A)

·
(

||∆A||
||A|| +

||∆b||
||A|| · ||x̂||

)

85

Alternative view of conditioning for
Ax = b

Recall conditioning relationship for Ax = b based on perturbation theory

Consider bound on forward error based on residual, r = b - A⋅x_computed

||∆x||
||x̂|| ≤ ||A−1|| · ||A||︸ ︷︷ ︸

≡κ(A)

·
(

||∆A||
||A|| +

||∆b||
||A|| · ||x̂||

)

r = b−Ax̂ =⇒ x̂ = A−1 · (b− r) = A−1(Ax− r) = x−A−1r

=⇒ ∆x = A−1r

=⇒ ||∆x|| ≤ ||A−1|| · ||r||

86

