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Source: Dubey, et al., of Intel (2005)
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Problem: Seamless image cloning.
(Source: Pérez, et al., SIGGRAPH 2003)
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… then reconstruct.
(Source: Pérez, et al., SIGGRAPH 2003)
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Review: Multigrid
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Exploiting structure to obtain fast 
algorithms for 2-D Poisson

Dense LU: Assume no structure ⇒ O(n6)

Sparse LU: Sparsity ⇒ O(n3), need extra memory, hard to parallize

CG: Symmetric positive definite ⇒ O(n3), a little extra memory

RB SOR: Fixed sparsity pattern ⇒ O(n3), no extra memory, easy to parallelize

FFT: Eigendecomposition ⇒ O(n2 log n)

Multigrid: Eigendecomposition ⇒ O(n2) [Optimal!]
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Problem: Slow convergence
RHS True solution

Best possible
5-step

5 steps of Jacobi
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Error “frequencies”
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Initial error
    “Rough”
    Lots of high frequency components
    Norm = 1.65

Error after 1 weighted Jacobi step
    “Smoother”
     Less high frequency component
     Norm = 1.06

Error after 2 weighted Jacobi steps
    “Smooth”
     Little high frequency component
     Norm = .92, 
            won’t decrease much more
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“Multigrids” in 2-D

P (3)

P (i) = Problem on
(
2i + 1

)
×

(
2i + 1

)
grid

T (i)x(i) = b(i)

P (1)P (2)
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Full multigrid algorithm

FMG
(
b(k), x(k)

)

x(1) ← Exact solution to P (1)

for i = 2 to k do
x(i) ← MGV

(
b(i), L(i−1)

(
x(i−1)

))

k=2 3 4 5
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Example 1: When single-precision is 
faster than double

On STI Cell

SPEED(single) = 14x SPEED(double): 204.8 Gflop/s vs. 14.6 Gflop/s

SPEs fully IEEE-compliant for double, but only support round-to-zero in single

On regular CPUs with SIMD units

SPEED(single) ~ 2x SPEED(double)

SSE2: S(single) = 4 flops / cycle vs. S(double) = 2 flops/cycle

PowerPC Altivec: S(single) = 8 flops / cycle; no double (4 flops / cycle)

On a GPU, might not have double-precision support
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Example 2: Parallelism and floating-
point semantics: Bisection on GPUs

Bisection algorithm computes eigenvalues of symmetric tridiagonal matrix

Inner-kernel is a routine, Count(x), which counts the number of eigenvalues 
less than x

Correctness 1: Count(x) must be “monotonic”

Correctness 2: (Some approaches) IEEE FP-compliance

ATI Radeon X1900 XT GPU does not strictly adhere to IEEE floating-point 
standard, causing error in some cases

But workaround possible

14



The impact of parallelism on 
numerical algorithms

Larger problems magnify errors: Round-off, ill-conditioning, instabilities

Reproducibility: a + (b + c) ≠ (a + b) + c

Fast parallel algorithm may be much less stable than fast serial algorithm

Flops cheaper than communication

Speeds at different precisions may vary significantly [e.g., SSEk, Cell]

Perils of arithmetic heterogenity, e.g., CPU vs. GPU support of IEEE
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A computational paradigm

Use fast algorithm that may be unstable (or “less” stable)

Check result at the end

If needed, re-run or fix-up using slow-but-safe algorithm
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Sources for today’s material

Applied Numerical Linear Algebra, by Demmel 

Accuracy and stability of numerical algorithms, by Higham

“Trading off parallelism and numerical stability,” by Demmel (1992)

“Exploiting the performance of 32 bit arithmetic in obtaining 64 bit accuracy,” 
by Langou, et al. (2006)

“Using GPUs to accelerate the bisection algorithm for finding eigenvalues of 
symmetric tridiagonal matrices,” by Volkov and Demmel (2007)

CS 267 (Demmel, UCB)

Plamen Koev (NCSU)
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Reasoning about accuracy and 
stability
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Sources of error in a computation

Uncertainty in input data, due to measurements, earlier computations, ...

Truncation errors, due to algorithmic approximations

Rounding errors, due to finite-precision arithmetic

Today’s focus: Rounding error analysis
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Accuracy vs. precision

Accuracy: Absolute or relative error in computed quantity

Precision: Accuracy of basic operations (+, -, *, /, …)

Accuracy not limited by precision!

Can simulate arbitrarily higher precision with a given precision

Cost: Speed
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A model of floating-point arithmetic

Basic operations (+, -, *, /, …) satisfy:

ε = “Unit round-off” or “machine/format precision”

IEEE 754 single-precision (32-bit) ~ 10-8

Double (64-bit) ~ 10-16

Extended (80-bit on Intel) ~ 10-20

Fused multiply-add: Two ops with only one error

fl(a op b) = (a op b)(1 + δ), |δ| ≤ ε
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Error analysis notation

Desired computation:

What our algorithm actually computes:

ŷ = f̂(x)

y = f(x)
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Measuring errors

Absolute error

Relative error

(Forward) Stability: “Small” bounds on error

For vectors and matrices, use “norms”

|x̂− x|

|x̂− x|
|x|

||x||2 ≡
√∑

i

x2
i ||x||1 ≡

∑

i

|xi| ||x||∞ ≡ max
i

|xi|
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x

y = f(x)

Input space
Output space

Forward error

ŷ
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Forward vs. backward errors

Forward error analysis bounds

Backward error analysis bounds

Numerically stable: Bounds are “small”

|ŷ − y| or
|ŷ − y|

|y|

∆x : ŷ = f(x + ∆x)
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x

x + ∆x

y = f(x)

ŷ = f(x + ∆x)

Input space
Output space

Forward error

Backward error
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Mixed (forward-backward) stability

Computed answer “near” exact solution of a nearby problem

∆x,∆y : ŷ + ∆y = f(x + ∆x)

x

x + ∆x

y = f(x)

ŷ

f(x + ∆x)

∆y
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Conditioning: Relating forward and 
backward error

ŷ = f(x + ∆x) ≈ f(x) + f ′(x)∆x = y + f ′(x)∆x

=⇒ ŷ − y ≈ f ′(x)∆x

ŷ − y

y
≈ f ′(x)∆x

f(x)
· x

x

⇓∣∣∣∣
ŷ − y

y

∣∣∣∣ !
∣∣∣∣
xf ′(x)
f(x)

∣∣∣∣ ·
∣∣∣∣
∆x

x

∣∣∣∣
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Conditioning: Relating forward and 
backward error

Define (relative) condition number:

Roughly: (Forward error) ≤ (Condition number) * (Backward error)

c(x) =
∣∣∣∣
xf ′(x)
f(x)

∣∣∣∣

∣∣∣∣
ŷ − y

y

∣∣∣∣ !
∣∣∣∣
xf ′(x)
f(x)

∣∣∣∣ ·
∣∣∣∣
∆x

x

∣∣∣∣
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Comments on conditioning

Rule-of-thumb: (Forward error) ≤ (Condition number) * (Backward error) 

Condition number is problem dependent

Backward stability ⇒ Forward stability, but not vice-versa 

Ill-conditioned problem can have large forward error

c(x) =
∣∣∣∣
xf ′(x)
f(x)

∣∣∣∣
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Example: Condition number for 
solving linear systems

Condition number

Ax = b

(A + ∆A) · x̂ = b + ∆b

⇓
||∆x||
||x̂|| ≤ ||A−1|| · ||A||︸ ︷︷ ︸

≡κ(A)

·
(

||∆A||
||A|| +

||∆b||
||A|| · ||x̂||

)
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Example: Condition number for 
solving linear systems

−A · x = −b
(A + ∆A) · x̂ = b + ∆b

A · (x̂− x) + ∆A · x̂ = ∆b
⇓

∆x = A−1 · (∆b−∆A · x̂)
||∆x|| ≤ ||A−1|| · (||∆A|| · ||x̂|| + ||∆b||)
||∆x||
||x̂|| ≤ ||A−1|| ·

(
||∆A|| + ||∆b||

||x̂||

)

⇓
||∆x||
||x̂|| ≤ ||A−1|| · ||A|| ·

(
||∆A||
||A|| + ||∆b||

||A||·||x̂||

)
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Subtractive cancellation

May lose accuracy when subtracting nearly equal values

.123456789xxx
− .123456789yyy

.000000000zzz

Example:
12 ⇒ 3 significant digits

â ≈ a > 0, b̂ ≈ b > 0 =⇒ â + b̂ ≈ a + b

â · b̂ ≈ a · b

â/b̂ ≈ a/b
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Example: Subtractive cancellation

f(x) ≡ 1− cos x

x2
<

1
2

∀x $= 0

  0 0.5   1 1.5   2 2.5   3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x / π

f(x
)
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Example: Subtractive cancellation

Suppose x = 1.2 × 10-5 and precision = 10 digits:

“1 - c” is exact, but result is same size as error in c

c ≡ cos(1.2× 10−5) ≈ 0.999 999 999 9
1− c = 0.000 000 000 1 = 10−10

1− c

x2
=

10−10

1.44× 10−10
= 0.6944 . . .

f(x) ≡ 1− cos x

x2
<

1
2

∀x $= 0
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Cancellation magnifies errors

â ≡ a · (1 + ∆a)

b̂ ≡ b · (1 + ∆b)

ŷ ≡ â− b̂∣∣∣∣
ŷ − y

y

∣∣∣∣ =
∣∣∣∣
−a∆a− b∆b

a− b

∣∣∣∣

≤ max(|∆a|, |∆b|) · |a| + |b|
|a− b|
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Cancellation not always bad!

Operands may be exact (e.g., initial data)

Cancellation may be symptomatic of ill-conditioning

Effect may be irrelevant, e.g., x + (y - z) is safe if

0 < y ≈ z " x
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A few bad errors can ruin a 
computation

Instability can often be traced to just a few insidious errors, not just 
accumulation of lots of error

10

1,000

10,000

1,000,000

2.593743 1.25×10-1 

2.717051 1.23×10-3 

2.718597 3.15×10-4 

2.595227 1.23×10-1 

n f̂n |f̂n − e|

e ≡ lim
n→∞

(
1 +

1
n

)n

= 2.71828 . . .
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Rounding errors can be beneficial

A has 3 eigenvalues: 0, 0.4394…, 1.161…

Eigenvalue 0 has eigenvector [1, 1, 1]T

Consider power method with initial guess [1, 1, 1]T

1-step in exact arithmetic ⇒ 0, so no eigenpair information

With rounding, get principal eigenvector in ~ 40 steps

A =




0.4 −0.6 0.2
−0.3 0.7 −0.4
−0.1 −0.4 0.5
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Non-overlapping expansion

a

b

a1 a2

b1 b2
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Non-overlapping expansion

a

b

a1 a2

b1 b2

a1 a2 + b1

ŝ− a 0 b1

b20

a + b→ ŝ

⇐ Higher accuracy in fixed precision(ŝ, ê) : ŝ + ê = a + b

b− (ŝ− a)→ ê
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Misconceptions [Higham]

Cancellation is always bad

Rounding errors can overwhelm only for many accumulations

Rounding errors cannot be beneficial

Accuracy always limited by precision

Final computed answer cannot be more accurate than intermediate values

Short computation w/o cancellation, underflow, and overflow is accurate

Increasing precision always increases accuracy
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Designing stable algorithms

Avoid subtracting quantities contaminated by error if possible

Minimize size of intermediate quantities

Look for formulations that are mathematically but not numerically equivalent

Update paradigm: new = old + correction

Use well-conditioned transformations, e.g., multiply by orthogonal matrices

Avoid unnecessary overflow and underflow
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Example 1: Solve Ax = b using 
mixed-precision iterative refinement
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When single-precision is faster than 
double

On Cell

SPEED(single) = 14x SPEED(double): 204.8 Gflop/s vs. 14.6 Gflop/s

SPEs fully IEEE-compliant for double, but only support round-to-zero in single

On regular CPUs with SIMD units

SPEED(single) ~ 2x SPEED(double)

SSE2: S(single) = 4 flops / cycle vs. S(double) = 2 flops/cycle

PowerPC Altivec: S(single) = 8 flops / cycle; no double (4 flops / cycle)

On a GPU, might not have double-precision support
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Improving an estimate using 
Newton’s method

f(x) = 0

x(t+1) ← x(t) − f(x(t))
f ′(x(t))

⇓
f(x) = Ax− b

x(t+1) ← x(t) −A−1(A · x(t) − b)
⇓

d(t) ≡ x(t+1) − x(t) = A−1 · r(t)
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One step of “iterative refinement”

Inner loop of iterative refinement algorithm

d(t) ≡ x(t+1) − x(t) = A−1 · r(t)

x̂ = Estimated solution to Ax = b

r̂ ← b−A · x̂

Solve A · d̂ = r̂

x̂(improved) ← x̂ + d̂
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Mixed-precision iterative refinement

Theorem: Given a computed LU factorization of A, and

Then repeated iterative refinement converges by η at each stage, and

Independent of κ(A)!
||x(t) − x||∞

||x||∞
→ O(ε)

x̂ = Estimate, in precision ε

r̂ = Residual, in precision ε2

η = ε · || |A−1| · |L̂| · |Û | ||∞ < 1
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When single-precision is much 
faster than double

Compute a solution in single-precision, e.g., LU ⇒ O(n3) single-flops

Apply one-step of iterative refinement

Compute residual in double ⇒ O(n2) double-flops

Solve in single, e.g., reuse LU factors ⇒ O(n2) single-flops

Correct in double, round to single ⇒ O(n) double-flops

Matrix needs to be not-too-ill-conditioned
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Source: Dongarra, et al. (2007)
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Source: Dongarra, et al. (2007)

STI Cell
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Fixed-precision iterative refinement

Theorem: If instead r computed in same precision ε, then

Compare to bound for the original computed solution using LU:

||x̂− x||∞
||x||∞

! 2n · κ(A) · ε

||x̂− x||∞
||x||∞

! 3n · || |A−1| · |L̂| · |Û | ||∞
||x||∞

· ε
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Administrivia
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Two joint classes with CS 8803 SC

Tues 2/19: Floating-point issues in parallel computing by me

Tues 2/26: GPGPUs by Prof. Hyesoon Kim

Both classes meet in Klaus 1116E
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Administrative stuff

New room (dumpier, but cozier?): College of Computing Building (CCB) 101

Accounts: Apparently, you already have them

Front-end login node: ccil.cc.gatech.edu (CoC Unix account)

We “own” warp43—warp56

Some docs (MPI): http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html

Sign-up for mailing list: https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

55

http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab


Homework 1:
Parallel conjugate gradients

Implement a parallel solver for Ax = b (serial C version provided)

Evaluate on three matrices: 27-pt stencil, and two application matrices

“Simplified:” No preconditioning

Bonus: Reorder, precondition

Performance models to understand scalability of your implementation

Make measurements

Build predictive models

Collaboration encouraged: Compare programming models or platforms
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Parallelism and stability trade-offs
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Obstacles to fast and stable parallel 
numerical algorithms

Algorithms that work on small problems may fail at large sizes

Round-off accumulates

Condition number increases

Probability of “random instability” increases

Fast (parallel) algorithm may be less stable ⇒ trade-off

58



x̄ =
1
n

n∑

i=1

xi

σ(x) =
1

n− 1

n∑

i=1

(xi − x̄)2

Let σ̂(x) = computed σ(x),
and ε = machine precision.
then:

σ̂(x)− σ(x)
σ(x)

≤ (n + 3)ε + O
(
ε2

)

Round-off accumulates
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100 101 102 103 104 105
100

101

102

103

104

n2

κ(
T n×

 n
)

Condition number of Tnxn increases
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Random stabilities increase

If A is an n×n matrix selected at random [Edelman ’92]:

Let η = 10d⋅ε. Then if p processors all do plain LU on i.i.d. A matrices:

Pr

(
κ(A) >

1
η

)
= O(n

3
2 · η)

Prob. per sec. that instability occurs

∼ p · (speed in flop/s)
2
3n3

· n
3
2 · 10d · ε
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Trading-off speed and stability:
Serial example

Conventional error bound for naïve matrix multiply

Bound for Strassen’s, O(nlog_2 7) ≈ O(n2.81)

|flnäıve(A · B)−A · B| ≤ n · ε · |A| · |B|

||flStrassen(A · B)−A · B||M ≤ O(n3.6) · ε · ||A||M · ||B||M
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Trading-off speed and stability:
Parallel example

Consider A to be a dense symmetric positive definite matrix

Suppose triangular solve is slow

Conventional algorithm:

Fast “block LU” algorithm (no triangular solves)

A = L · U =




I 0 0

L21 I 0
L31 L32 I



 ·




U11 U12 U13

0 U22 U23

0 0 U33



⇒ O(ε) · (κ(A))
3
2

A = RT · R =




RT

11 0 0
RT

12 RT
22 0

RT
13 RT

23 RT
33



 ·




R11 R12 R13

0 R22 R23

0 0 R33



⇒ ||∆A|| = O(ε) · κ(A)
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IEEE floating-point arithmetic
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Floating-point number systems

Subset of reals of the form:

y = ± m × βe−t

Base
(radix)

Mantissa
(Significand)

Sign Exponent

Precision

Representation = Sign + 2 integers (m, e); t, β implicit

y ∈ F ⊂ R
0 ≤ m < βt
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Normalization

Set leading digit of m implicitly

Guarantees unique representation of each value

Avoids storage of leading zeros

Get extra digit (bit) of precision

y ∈ F ⊂ R
0 ≤ m < βt

y = ± m × βe−t

m ≥ 2t−1

Normalization
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IEEE 754 Standard [Kahan]

Base-2 representation with m “normalized”

y = ± m × 2e−t

y "= 0 =⇒ m ≥ 2t−1
“Normalized”

IEEE single precision: 32 bits, ε ≈ 6×10-8 (REAL / float)

±

−125 = emin ≤ e ≤ emax = 128

0 ≤ m < 224 ≈ 16 million
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IEEE formats

±

emin ≤ e ≤ emax 0 ≤ m < 2t

Format Total bits
Exp. bits

(emin, emax)
t-1 ε Fortran / C

Single

Double

Extended
(Intel)

32
8

(-125, 128)
23 6 × 10-8 REAL*4

float

64
11

(-1021, 1024)
52 10-16 REAL*8

double

80
15

(-16381, 16384)
64 5 × 10-20 REAL*10

long double
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±

−125 = emin ≤ e ≤ emax = 128

0 ≤ m < 224 ≈ 16 million

y = ± m × 2e−t

y "= 0 =⇒ m ≥ 2t−1
“Normalized”
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Rules of arithmetic

Philosophy: As simple as possible

Correct rounding: Round exact value to nearest floating-point number

Round to nearest even, to break ties

Other modes: up, down, toward 0

Don’t actually need exact value to round correctly (!)

Applies to +, -, *, /, sqrt, conversion between formats ⇒ model holds

fl(a op b) = (a op b)(1 + δ), |δ| < ε
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Exception handling

What happens when exact value is not a real number? Too large or small?

Overflow/underflow

Invalid, e.g., 0 / 0

Divide by zero

“Inexact”Inexact

Answer: Exception generated

Set flag and continue (default)

Trap to custom handler
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Denormalized numbers (“denorms”)

Value exceeds overflow threshold or falls below underflow threshold

Underflow permits safely executing: if (a != b) then x = a / (a-b)
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Other special values

Infinity (INF): Divide by zero

Not-a-number (NaN): 0 / 0; 0 * INF; INF - INF; INF / INF; sqrt(-1)

Operations involving NaNs generate NaNs (except “max”/”min”)

Can use to represent uninitialized or missing data

Quiet vs. signaling
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Example 2: Fast and accurate 
bisection on GPUs
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Dense symmetric eigensolvers

Tridiagonal reduction — Transform A to T using, e.g., Householder: O(n3)

Solve Tv = λv

λ is eigenvalue for A; back-transform v to get corresponding eigenvector

T =





a1 b1

b1 a2 b2

b2 . .
. . .

. an−1 bn−1

bn−1 an
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Bisection kernel: Count(x)

Bisection: Finds eigenvalues in a given interval [a, b) by “search”

Inner-loop of one algorithm for solving Tv = λv

⇐ Counts no. of eigenvalues of T less than xCount(x)
count← 0
d← 1
for i = 1 to n do

d← ai − x−
b2
i−1

d
if d < 0 then

count ← count + 1
return count
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Bisection algorithm

= An eigenvalue [li, ui)
C(ui)− C(li)

Repeatedly subdivide intervals until each one contains 1 eigenvalue.
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Multisection: Increase parallelism

Easiest parallelization:
Evaluate Count(x) on multiple intervals simultaneously, at cost of redundancy.

Same Count(.)
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Correctness requires monotonicity

Count(x) must be monotonic for overall algorithm to work

Can modify Count(x) slightly to guarantee it is monotonic iff basic operations on 
scalars (+, -, *, /) are monotonic

IEEE floating-point semantics guarantee monotonicity

...

d← ai − x−
b2
i−1

d
if d < 0 then count ← count + 1

...
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“In conclusion…”
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The impact of parallelism on 
numerical algorithms

Larger problems magnify errors: Round-off, ill-conditioning, instabilities

Reproducibility: a + (b + c) ≠ (a + b) + c

Fast parallel algorithm may be much less stable than fast serial algorithm

Flops cheaper than communication

Speeds at different precisions may vary significantly [e.g., SSEk, Cell]

Perils of arithmetic heterogenity, e.g., CPU vs. GPU support of IEEE
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Backup slides
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A brief history of floating-point
[Slide from Demmel]

von Neumann and Goldstine (1947): “Can’t expect to solve most big [n>15] 
systems without carrying many decimal digits [d>8], otherwise the computed 
answer would be completely inaccurate.”

Turing (1949): Backward error analysis

Wilkinson (1961): Rediscovers and publicizes idea — Turing Award 1970

Kahan (late 1970s): IEEE 754 floating-point standard — Turing Award 1989

Motivated by many years of machines with slightly differing arithmetics

First implementation in Intel 8087

Nearly universally implemented
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Recall: Condition number for Ax = b

Condition number

||∆x||
||x̂|| ≤ ||A−1|| · ||A||︸ ︷︷ ︸

≡κ(A)

·
(

||∆A||
||A|| +

||∆b||
||A|| · ||x̂||

)
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Alternative view of conditioning for 
Ax = b

Recall conditioning relationship for Ax = b based on perturbation theory

Consider bound on forward error based on residual, r = b - A⋅x_computed

||∆x||
||x̂|| ≤ ||A−1|| · ||A||︸ ︷︷ ︸

≡κ(A)

·
(

||∆A||
||A|| +

||∆b||
||A|| · ||x̂||

)

r = b−Ax̂ =⇒ x̂ = A−1 · (b− r) = A−1(Ax− r) = x−A−1r

=⇒ ∆x = A−1r

=⇒ ||∆x|| ≤ ||A−1|| · ||r||
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