Interactions between parallelism
and numerical stability, accuracy

Prof. Richard Vuduc
Georgia Institute of Technology
CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.13] Tuesday, February 19, 2008




Computer |
Vision |

Face
Tracklng Detectio

Physical
Simulation

(Financial) | N
Analytics . Data Mining

Portfolio § Option
Mgmt Pricing

Rendering

Global CFD Face, §§ Rigid
IIIumlnatlon Cloth Body

Medla |
CoII|S|on
detection NLP FiMI
Classificgtion T alnlng
IPM K-Means
v Level Set - (LP.GP) v
Particle ALY Fast Marching Text
Filtering transform Method Monte Carlo Indexer
Krylov Iterative Solvers Direct Solver Basic Iterative Solver Non-Convex
(PCQG) (Cholesky) (Jacobi, GS, SOR) Method

'—

Basic matrix primitives Basic geometry primitives
octiont st e o

Source: Dubey, et al., of Intel (2005)



image cloning.

Seamless

(Source: Pérez, et al., SIGGRAPH 2003)

Problem



... then reconstruct.

(Source: Pérez, et al., SIGGRAPH 2003)



Review: Multigrid




Exploiting structure to obtain fast
algorithms for 2-D Poisson

== Dense LU: Assume no structure = O(n°)

== Sparse LU: Sparsity = O(n3), need extra memory, hard to parallize

== CG: Symmetric positive definite = O(n3), a little extra memory

== RB SOR: Fixed sparsity pattern = O(n3), no extra memory, easy to parallelize
== FFT: Eigendecomposition = O(n® log n)

== Multigrid: Eigendecomposition = O(n?) [Optimall]




Problem: Slow convergence

RHS True solution

1. 5-step




Error “frequencies’

() — Rt . ((0)

(I - %ZAZT)t )

7 (I _ %A)t 77 . ((0)

J
g7 . &) (I—EA)tZT e(0)
2
(ZT €<t>> _ ([_EAY (ZT.E<0>)
J 77 J




Solution after D steps

Error

Error in Frequency Coordinates

1.5 ;rue td(iﬁeﬂ?i) 0.5 0.5
rox {soli .
o W . e Initial error
“Rough”
D5FF----M4---mao 0 u
Lots of high frequency components
] SR ETEREE FER TR (RETER oft of Norm = 1.65
P i
B B e I | L | :
-1 .50 32 64—0.5 —0.50 P 54
Nom =1.65
Solution after 1 steps Error Error in Frequency Coordinates
1.5 0.5 T

True (dotted)
Approx (solid)

Norm = 1.055

0.5 H

Error after 1 weighted Jacobi step
“Smoother”
Less high frequency component
Norm = 1.06

Solution after 2 steps

True (dotted)
Approx (solid)

...........................

.................

0.5

Error in Frequency Coordinates

Error

0 32

32
Norm=0.8176

D.5 T

Error after 2 weighted Jacobi steps
“Smooth”
Little high frequency component
Norm = .92,
won’t decrease much more




“Multigrids” in 2-D

P — Problem on (2i + 1) X (Qi + 1) orid
7)) — 3@
pB) p2) p)

@@

@@ ® ® ®

@@

@@ ® ® ® ®
@@

@@ ® ® ®

@@

10



Full multigrid algorithm

FMG (b(’“), x(k))

+1) — Exact solution to PV
for 1 =2 to k do
+O MOV (bu), 7.(i=1) (g;(i—l)))

=2 3 4 S

11



Interactions between parallelism
and numerical stability, accuracy

Prof. Richard Vuduc
Georgia Institute of Technology
CSE/CS 8803 PNA: Parallel Numerical Algorithms

[L.13] Tuesday, February 19, 2008

12



Example 1: When single-precision Is
faster than double

== On STl Cell
== SPEED(single) = 14x SPEED(double): 204.8 Gflop/s vs. 14.6 Gflop/s

== SPEs fully IEEE-compliant for double, but only support round-to-zero in single

== On regular CPUs with SIMD units
== SPEED(single) ~ 2x SPEED(double)

SSE2: S(single) = 4 flops / cycle vs. S(double) = 2 flops/cycle

PowerPC Altivec: S(single) = 8 flops / cycle; no double (4 flops / cycle)

== On a GPU, might not have double-precision support

13



Example 2: Parallelism and floating-
point semantics: Bisection on GPUs

== Bisection algorithm computes eigenvalues of symmetric tridiagonal matrix

== Inner-kernel is a routine, Count(x), which counts the number of eigenvalues
less than x

== Correctness 1: Count(x) must be “monotonic”

== Correctness 2: (Some approaches) IEEE FP-compliance

ATl Radeon X1900 XT GPU does not strictly adhere to IEEE floating-point
standard, causing error in some cases

But workaround possible

14



The impact of parallelism on
numerical algorithms

== Larger problems magnify errors: Round-oft, ill-conditioning, instabilities

== Reproducibility:a+(b+c)z(@+b)+c

== Fast parallel algorithm may be much less stable than fast serial algorithm
== Flops cheaper than communication

== Speeds at different precisions may vary significantly [e.g., SSEx, Cell]

== Perils of arithmetic heterogenity, e.g., CPU vs. GPU support of IEEE

15



A computational paradigm

== Use fast algorithm that may be unstable (or “less” stable)
== Check result at the end

== If needed, re-run or fix-up using slow-but-safe algorithm

16



Sources for today’s material

== Applied Numerical Linear Algebra, by Demmel
== Accuracy and stability of numerical algorithms, by Higham
== “Trading off parallelism and numerical stability,” by Demmel (1992)

== Exploiting the performance of 32 bit arithmetic in obtaining 64 bit accuracy,”
by Langou, et al. (2006)

== “Using GPUs to accelerate the bisection algorithm for finding eigenvalues of
symmetric tridiagonal matrices,” by Volkov and Demmel (2007)

== GS 267 (Demmel, UCB)
== Plamen Koev (NCSU)

17



Reasoning about accuracy and
stability




Sources of error in a computation

== Uncertainty in input data, due to measurements, earlier computations, ...
== Truncation errors, due to algorithmic approximations

== Rounding errors, due to finite-precision arithmetic

== [oday’s focus: Rounding error analysis

19



Accuracy Vvs. precision

== Accuracy: Absolute or relative error in computed quantity

== Precision: Accuracy of basic operations (+, -, *, /, ...)

== Accuracy not limited by precision!
== Can simulate arbitrarily higher precision with a given precision

== (Cost: Speed

20



A model of floating-point arithmetic

== Basic operations (+, -, ¥, /, ...) satisfy:

fl(a op b) = (a op b)(1+ 6), 0] < e

== € = “Unit round-off” or “machine/format precision”

IEEE 754 single-precision (32-bit) ~ 108
Double (64-bit) ~ 10°1°
Extended (80-bit on Intel) ~ 10-2°

== Fused multiply-add: Two ops with only one error

21



Error analysis notation

== Desired computation:

y = f(z)
== \What our algorithm actually computes:

)= f(z)

22



Measuring errors

i Absolute error

T —x

== Relative error | o .CE‘

|

== (Forward) Stability: “Small” bounds on error

== [For vectors and matrices, use “norms”

lalla= (D> 27 lelli =) lwil (2]l = max ]
) 7

23



Input space
Output space

y = f(x)

Forward error

£A
$y

24



Forward vs. backward errors

Forward error analysis bounds

G-y o Y
Y]

Backward error analysis bounds

AT : y = f(x+ Ax)
Numerically stable: Bounds are “small”

25



Input space

Backward error

T+ Ax

Output space

y = f(x)

Forward error

= f(z+ Az)

26



Mixed (forward-backward) stability

== Computed answer “near” exact solution of a nearby problem

Az, Ay : g+ Ay = f(xz + Ax)




Conditioning: Relating forward and
pbackward error

g=flz+Az) = f(z)+ f(z)Az=y+ f(z)Ax
— g—y =~ f(z)Az
y-y _ @Az =
Y fla) x
Y
y—yl o |zf(x)| |Az
y | | f(x) x




Conditioning: Relating forward and
pbackward error

g—y| - |zf(x)| |Az
y |~ | f(z) x
== Define (relative) condition number:
/
f(z)

== Roughly: (Forward error) < (Condition number) * (Backward error)




Comments on conditioning

== Rule-of-thumb: (Forward error) < (Condition number) * (Backward error)

el
W= )

== Condition number is problem dependent

== Backward stability = Forward stability, but not vice-versa

== lll-conditioned problem can have large forward error

30



Example: Condition number for
solving linear systems

Ar = b
(A+AA) -7 = b+ Ab
Y
|Ax|| _ |AA]] |Ab]
< < HA 1HHAH A | A :
|z — 1Al 1[A[]- (2]

Condition number



Example: Condition number for
solving linear systems

—A-x = —=b
(A+AA) -3 = b+ Ab
A-(z—x)+AA-2 = Ab

J

Az = Al-(Ab—AA-7)

|Az]| < [JA7Y]- (J|AA]l-]]Z]] + || Ab]))

Az 1 [1Ab]

el <At (jlaa) + et
J

Az S nan . (LAAL L llAb]

o < AT {IA] (||A|| '||A||-||:f:||)



Subtractive cancellation

Ga~a>0 bxeb>0 = a4+

b ~ a+b
G- b a-b
i/b a/b
== May lose accuracy when subtracting nearly equal values
1234567892
E le:
1)2(azgesignificant digits - ) 123456789yyy

.000000000zzz

33



Example: Subtractive cancellation

Vo # 0

34



Example: Subtractive cancellation

1 —cosx

flz) = 5 <

X

Vo # 0

DO | —

Suppose x = 1.2 x 10 and precision = 10 digits:
c=cos(1.2x107°) =~ 0.999 999 999 9

1—c = 0.0000000001=10"1
1 —rc 1010
2 1.44 x 10—10 .69

“1 - c” Is exact, but result is same size as errorin ¢

35



Cancellation magnifies errors

a = a-(1+ Aa)
b = b-(1+ Ab)
y = G — b
y—y|  |—alAa—DAD
Y a—b
a| 4 |b
< max(|Ad, JAb) - 210

36



Cancellation not always bad!

== Operands may be exact (e.g., initial data)
== Cancellation may be symptomatic of ill-conditioning

== Effect may be irrelevant, e.g., x + (y - z) is safe if

O<y=zLKLx

37



A few bad errors can ruin a
computation

== Instability can often be traced to just a few insidious errors, not just
accumulation of lots of error

ve fn |]En_6‘

I\ 10 2.593743 1.25%10"
e = lim (14 —

s o0 n 1,000 2.717051 1.23x10°3

= 2.71828... 10,000 2.718597 3.15x10

1,000,000 2.595227 1.23x10"

38



Rounding errors can be beneficial

04 —-0.6 0.2
A= -03 07 —-04
—-0.1 =04 0.5

== A has 3 eigenvalues: 0, 0.4394..., 1.161...
== Eigenvalue O has eigenvector [1, 1, 1]"

== Consider power method with initial guess [1, 1, 1]'

== 1-step in exact arithmetic = 0, so no eigenpair information

= \With rounding, get principal eigenvector in ~ 40 steps

39



Non-overlapping expansion

a a1 0%,




Non-overlapping expansion

a aq 2
b b1 bo
a+b— s a1 as + bq
§—a 0 by
b—(5—a) — ¢ 0 b
(§, e S+ ¢eé=a-+ b <« Higheraccuracy in fixed precision

41



Misconceptions [Higham]

== Cancellation is always bad
== Rounding errors can overwhelm only for many accumulations
== Rounding errors cannot be beneficial

== Accuracy always limited by precision

== Final computed answer cannot be more accurate than intermediate values
== Short computation w/o cancellation, underflow, and overflow is accurate

== INncreasing precision always increases accuracy

42



Designing stable algorithms

== Avoid subtracting quantities contaminated by error if possible

== Minimize size of intermediate quantities

== OOk for formulations that are mathematically but not numerically equivalent
== Update paradigm: new = old + correction

== Use well-conditioned transformations, e.g., multiply by orthogonal matrices

== Avoid unnecessary overflow and underflow

43



Example 1: Solve Ax = b using
Mixed-precision iterative refinement




When single-precision Is faster than
double

== On Cell

== SPEED(single) = 14x SPEED(double): 204.8 Gflop/s vs. 14.6 Gflop/s
== SPEs fully IEEE-compliant for double, but only support round-to-zero in single

== On regular CPUs with SIMD units
== SPEED(single) ~ 2x SPEED(double)

SSE2: S(single) = 4 flops / cycle vs. S(double) = 2 flops/cycle

PowerPC Altivec: S(single) = 8 flops / cycle; no double (4 flops / cycle)

== On a GPU, might not have double-precision support

45



Improving an estimate using
Newton’s method

fl@) = 0

(¢)
A () f(z'")

/(@)

| <=

Ax — b
e — A YA 2 —p)

f(z)

(t+1)

I <= 1

4 L+1) (1) g1 ()



One step of “iterative refinement”
g = 1) () — g1 ()

== Inner loop of iterative refinement algorithm

2 = Estimated solution to Az = b

r«—b—A-x

Solve A -d = 7

i(improved) — i d
_e

47



Mixed-precision iterative refinement

==  Theorem: Given a computed LU factorization of A, and

x = HKstimate, In precision €
# = Residual, in precision €
n = e |[|[AT-[L]-|U] || <1

== |hen repeated iterative refinement converges by n at each stage, and

— O (6) Independent of k(A)!

48



When single-precision Is much
faster than double

== Compute a solution in single-precision, e.g., LU = O(n?) single-flops

== Apply one-step of iterative refinement

Compute residual in double = O(n?) double-flops

Solve in single, e.qg., reuse LU factors = O(n?) single-flops

Correct in double, round to single = O(n) double-flops

== Matrix needs to be not-too-ill-conditioned

49



Architecture (BLAS) n DGEMM | DP Solve | DP Solve | #iter
/ISGEMM | /SP Solve | /Iter Ref
Intel Pentium III Coppermine (Goto) 3500 2.10 224 1.92 4
Intel Pentium IV Prescott (Goto) 4000 2.00 1.86 1.57 5
AMD Opteron (Goto) 4000 1.98 1.93 1.53 5
Sun UltraSPARC Ile (Sunperf) 3000 1.45 1.79 1.58 4
IBM Power PC G5 (2.7 GHz) (VecLib) 5000 2 29 2 05 1.24 5
Cray X1 (libsci) 4000 1.68 1.57 1.32 7
Compaq Alpha EV6 (CXML) 3000 0.99 1.08 1.01 4
IBM SP Power3 (ESSL) 3000 1.03 1.13 1.00 3
SGI Octane (ATLAS) 2000 1.08 1.13 0.91 4
Recent addition to LAPACK 3.1 as DSGESV

Architecture (BLAS-MPI) # n DP Solve DP Solve #

procs /SP Solve /Iter Ref | iter
AMD Opteron (Goto — OpenMPI MX) 32 22627 1.85 1.79 6
AMD Opteron (Goto — OpenMPI MX) 64 32000 1.90 1.83 6

Source: Dongarra, et al. (2007)

50



STI Cell

250 1

200 -  —0—0—0—0—0—0—0—0—0—0—0—0—0—0—

—o— SP Peak (204 Gflop’s) '
~-SP Ax=b IBM
150 +——— ——~DSGESV .30 secs
3 DP Peak (15 Gflop/s)
%)
g —»=DP Ax=b IBM
100 - .47 secs
A
0 - 8.3X
3.9 secs
M)F%ﬁk%***)‘(**’(*'
0 ] 1 1 1 1 1 ] 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Matrix Size

Source: Dongarra, et al. (2007)

51



Fixed-precision iterative refinement

== Theorem: If instead r computed in same precision &, then

== Compare to bound for the original computed solution using LU:

A— _1 . T . )
&~ ol < g ILATY - IEL10] Il
E[®

52



Administrivia




Two joint classes with CS 8803 SC

Tues 2/19: Floating-point issues in parallel computing by me
Tues 2/26: GPGPUs by Prof. Hyesoon Kim

Both classes meet in Klaus 1116E

54



Administrative stuft

==  New room (dumpier, but cozier?): College of Computing Building (CCB) 101
== Accounts: Apparently, you already have them

== Front-end login node: ccil.cc.gatech.edu (CoC Unix account)

= \We “own” warp43—warp56

= Some docs (MPI): http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html

== Sign-up for mailing list: https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

55


http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

Homework 1:
Parallel conjugate gradients

== Implement a parallel solver for Ax = b (serial C version provided)

== Evaluate on three matrices: 27-pt stencil, and two application matrices

= “Simplified:” No preconditioning

== Bonus: Reorder, precondition

== Performance models to understand scalability of your implementation
== Make measurements

== Build predictive models

== Collaboration encouraged: Compare programming models or platforms

56



Parallelism and stabllity trade-offs




Obstacles to fast and stable parallel
numerical algorithms

== Algorithms that work on small problems may fail at large sizes
Round-off accumulates
Condition number increases

Probability of “random instability” increases

== Fast (parallel) algorithm may be less stable = trade-off

58



Round-off accumulates

n
1 Z
n -

1=1

T =
@) = 3 (-2
n—lizl ’
Let 6(x) = computed o(x),
and € = machine precision.
then:

(n+3)e+ O (&)

VAN

59



Condition number of T,x» increases

nx n)

60



Random stabllities increase

If A is an nxn matrix selected at random [Edelman ’92]:

ﬂ°d@>l = O(nz - n)
(x>3)

Let n = 109-€. Then if p processors all do plain LU on i.i.d. A matrices:

Prob. per sec. that instability occurs
(speed in flop/s)

3 d
Np 5 3 n210 - €
§TL

61



Trading-off speed and stability:
Serial example

== Conventional error bound for naive matrix multiply

Al .« (A-B)—A-B|<n-e-|A|-|B]

naive
2= Bound for Strassen’s, O(n'°9-27) ~ O(n2-81)

flstrassen(A - B) — A~ Blly < O(n™°) e+ [|Alla - || Bl|m

62



Trading-off speed and stability:
Parallel example

== Consider A to be a dense symmetric positive definite matrix
== Suppose triangular solve is slow

== Conventional algorithm:

A=RT.Rp= Ri, RL, 0 : 0 Ros Rog :> IIAA| = O(e) - k(A)
- Riy Ry R 1 L0 0 B33 | e

== Fast “block LU” algorithm (no triangular solves)

— I O O - = U11 U12 U13 = g ------------------------------- -3--;
A=L -U = L21 I 0 : 0 U22 U23 :>O(€) ) (K(A))§
Ly Laz T | 0 0 Uss | o

63



|IEEE floating-point arithmetic




Floating-point number systems

Subset of reals of the form:

Sign Exponent
_ < 6€—t Precision y < FCR
A 0<m<
Mantissa Base

(Significand) (radix)

Representation = Sign + 2 integers (m, e); t, B implicit

65



Normalization

::mxﬁe_t ye b CR
2t—1 O§m<ﬁt
LN

S <
AVaR|

Normalization

== Set leading digit of m implicitly
== Quarantees unique representation of each value
== Avoids storage of leading zeros

==  Get extra digit (bit) of precision

66



IEEE 754 Standard [Kahan]

== Base-2 representation with m “normalized”

Y — +m x 2°7°
Y # 0 — m> ot—1 <€ “Normalized”

== |EEE single precision: 32 bits, € =~ 6x108 (REAL / float)
—125 = epin < e < emax = 128

0<m«< 224 ~ 16 million
-



IEEE formats

.......... S —————————————————————
=10 LLE i
:....I....!.... ...................I....! ........ L ] b oo
<€ > <€ >
€min S S €max 0 S m < 2t
Format Total bits 2. ol Fortran / C
(emin, emax)
REAL*4
Single (-125, 128) 6 x10° float
11 . REAL*8
Double o4 (-1021, 1024) > 10 double
Extended 15 o REAL*10
(Intel) 80 (-16381, 16384) o4 > x 10 Tong double

68



<
i T— vregeneranen o {, ........ { ............ {, ........ {, ........ { .....................................
=m P | N |
SR S - | S S S S I - . - . - . - . H
<
0<m < 2%* ~ 16 million
5126 _
underflow
-2'126 threshold
128 124 125 |0 and +0 125 124
2y 2y 2y | y! %
|II|I I|IIIIIlI I IIIllIIllIIlIIll | 1
| 120120 | |lllllll I Illlllll | 6] I S O e | |

éf f\l /\ L L]
$ | s
' -

k'3

normalized
negative
numbers

normalized
positive
numbers

69



Rules of arithmetic

== Philosophy: As simple as possible

== Correct rounding: Round exact value to nearest floating-point number
== Round to nearest even, to break ties

== Other modes: up, down, toward O

== Don’t actually need exact value to round correctly (!)

*

== Appliesto +, -, *, /, sqgrt, conversion between formats = model holds

flla op b) = (a op b)(1 + 9), 0| < e

70



Exception handling

== \What happens when exact value is not a real number? Too large or small?
== Overflow/underflow

2= Invalid, e.g.,0/0

== Divide by zero

= “|Inexact”’Inexact

== Answer: Exception generated

== Set flag and continue (default)

== [rap to custom handler

71



Denormalized numbers (“denorms”)

== \Value exceeds overflow threshold or falls below underflow threshold

2-126 _ 212?*(2_2-23) _
126 underflow overflow
= threshold threshold
) i 0 and +0 i .
P 128 5 124 P 125 > 125 > 124 215.’.8
v v ¢ r r o v v
: | [ | | LLL LA e EEN [ 1 | | '
{:¢IN 1 HEEREEEIA R HHHUEEREEE 1 NI¢}
e ~ =N ~ -
normalized denormalized normalized
negative numbers positive
numbers numbers

== Underflow permits safely executing: if (a = b) then x = a / (a-b)

72



Other special values

== Infinity (INF): Divide by zero
== Not-a-number (NaN): 0/ 0; O * INF; INF - INF; INF / INF; sqgrt(-1)
== Operations involving NaNs generate NaNs (except “max”/"min”)

== (Can use to represent uninitialized or missing data

== Quiet vs. signaling

73



Example 2: Fast and accurate
bisection on GPUs




Dense symmetric eigensolvers

== Iridiagonal reduction — Transform A to T using, e.g., Householder: O(n3)

(@ b \

by az bs

== Solve Tv = A\v

== A is eigenvalue for A; back-transform v to get corresponding eigenvector

75



Bisection kernel: Count(x)

== Bisection: Finds eigenvalues in a given interval [a, b) by “search”

== Inner-loop of one algorithm for solving Tv = Av

Count(x) < Counts no. of eigenvalues of T less than x
count «— 0
d+— 1
for . =1 ton do
b7,

d«—a; —x —

if d < 0 then

count <« count + 1

d

return count

76



Bisection algorithm

¥ = An eigenvalue iy uq)

ok k] T | Y |
€ > ' < > i< > i< >:

I <€

>l > i e—>le—>i el

Repeatedly subdivide intervals until each one contains 1 eigenvalue.
-~~~

77



Multisection: Increase parallelism

Easiest parallelization:
Evaluate Count(x) on multiple intervals simultaneously, at cost of redundancy.

Same Count(.)

78



Correctness requires monotonicity

== Count(x) must be monotonic for overall algorithm to work

Can modify Count(x) slightly to guarantee it is monotonic iff basic operations on
scalars (+, -, *, /) are monotonic

|EEE floating-point semantics guarantee monotonicity

d«—a; —x—

d
if d <0 then count «— count +1

79



10

0.1

0.0001

0.00001

10

100

1000
Dimension of Matrix

—o— CPU-alone
~ GPU-alone
—— CPU-GPU

10000

100000

80



“In conclusion...”




The impact of parallelism on
numerical algorithms

== Larger problems magnify errors: Round-oft, ill-conditioning, instabilities

== Reproducibility:a+(b+c)z(@+b)+c

== Fast parallel algorithm may be much less stable than fast serial algorithm
== Flops cheaper than communication

== Speeds at different precisions may vary significantly [e.g., SSEx, Cell]

== Perils of arithmetic heterogenity, e.g., CPU vs. GPU support of IEEE

82



Backup slides




A brief history of floating-point

[Slide from Demmel]

== von Neumann and Goldstine (1947): “Can’t expect to solve most big [n>15]

systems without carrying many decimal digits [d>8], otherwise the computed
answer would be completely inaccurate.”

== [uring (1949): Backward error analysis
== Wilkinson (1961): Rediscovers and publicizes idea — Turing Award 1970
== Kahan (late 1970s): IEEE 754 floating-point standard — Turing Award 1989

== Motivated by many years of machines with slightly differing arithmetics
== First implementation in Intel 8087

== Nearly universally implemented

84



Recall: Condition number for Ax = b

Ax B AA Ab
||| — HA[L [A]] - [12]]
=x(A

Condition number




Alternative view of conditioning for
AX =D

== Recall conditioning relationship for Ax = b based on perturbation theory

|Az|] 1AA[l | [lAd]] )

Al <ty (St e
= AR e
=kr(A)

== Consider bound on forward error based on residual, r = b - A-x_computed

r=b—A2 = z=A1-(b-—r)=A'Az—-1r)=0—-A'r
— Az =A"'r
= [JAz]| < [[ATH] (I

86



