Multigrid for Poisson's Equation

Prof. Richard Vuduc
Georgia Institute of Technology
CSE/CS 8803 PNA, Spring 2008
[L.12] Thursday, February 14, 2008

Sources for today's material

:. CS 267 (Yelick \& Demmel, UCB)
.. Applied Numerical Linear Algebra, by Demmel
: Heath (UIUC)

Review: Parallel FFT

Exploiting structure to obtain fast algorithms for 2-D Poisson

H. Dense LU: Assume no structure $\Rightarrow \mathrm{O}\left(\mathrm{n}^{6}\right)$
H. \quad Sparse LU: Sparsity $\Rightarrow \mathrm{O}\left(\mathrm{n}^{3}\right)$, need extra memory
H. CG: Symmetric positive definite $\Rightarrow \mathrm{O}\left(\mathrm{n}^{3}\right)$, a little extra memory
:. RB SOR: Fixed sparsity pattern $\Rightarrow \mathrm{O}\left(\mathrm{n}^{3}\right)$, no extra memory
H. FFT: Eigendecomposition $\Rightarrow O\left(n^{2} \log n\right)$

Fast Fourier transform algorithm

$\operatorname{FFT}(x, \omega, m)$
if $m==1$ then
return x_{0}
else

```
\(x_{\text {even }} \leftarrow \operatorname{FFT}\left(x_{\text {even }}, \omega^{2}, \frac{m}{2}\right)\)
\(x_{\text {odd }} \leftarrow \operatorname{FFT}\left(x_{\text {odd }}, \omega^{2}, \frac{m}{2}\right)\)
\(w \leftarrow\left[w^{0}, w^{1}, \ldots, \omega^{\frac{m}{2}-1}\right] \Longleftarrow\) precomputed
return \(\left[x_{\text {even }}+\left(w \cdot * x_{\text {odd }}\right), x_{\text {even }}-\left(w \cdot * x_{\text {odd }}\right)\right]\)
```


FFT with transpose ($p=4$)

Algorithms for 2-D (3-D) Poisson, $N=n^{2}\left(=n^{3}\right)$

Algorithm	Serial	PRAM	Memory	\# procs
Dense LU	N^{3}	N	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Band LU	$\mathrm{N}^{2}\left(\mathrm{~N}^{7 / 3}\right)$	N	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{4 / 3}\right)$
Jacobi	$\mathbf{N}^{2}\left(\mathbf{N}^{5 / 3}\right)$	$\mathbf{N}\left(\mathbf{N}^{2 / 3}\right)$	\mathbf{N}	\mathbf{N}
Explicit inverse	N^{2}	$\log \mathrm{~N}$	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Sparse LU	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{2}\right)$	$\mathrm{N}^{1 / 2}$	$\mathrm{~N} \log \mathrm{~N}\left(\mathrm{~N}^{4 / 3}\right)$	N
Conj. grad.	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2(1 / 3)} \log \mathrm{N}$	N	N
RB SOR	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2}\left(\mathrm{~N}^{1 / 3}\right)$	N	N
FFT	$\mathrm{N} \log \mathrm{N}$	$\log ^{2}$	N	N
Multigrid	\mathbf{N}	$\log ^{2} \mathbf{N}$	\mathbf{N}	\mathbf{N}
Lower bound	\mathbf{N}	$\log ^{\mathbf{N}}$	\mathbf{N}	

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

Recall:

Discretizing 2-D Poisson

Graph and stencil

Recall: Jacobi's method

H. Rearrange terms in (2-D) Poisson:

$$
u_{i, j}=\frac{1}{4}\left(u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}+h^{2} f_{i, j}\right)
$$

H. For each (i, j), iteratively update (weighted averaging):

$$
u_{i, j}^{(t+1)}=\frac{1}{4}\left(u_{i-1, j}^{(t)}+u_{i+1, j}^{(t)}+u_{i, j-1}^{(t)}+u_{i, j+1}^{(t)}+h^{2} f_{i, j}\right)
$$

H. Motivation: Match solution to discrete Poisson exactly at nodes.

Problem: Slow convergence

5 steps of Jacobi

True solution

Best possible 5-step

Recall:

Convergence of Jacobi's method

H. Converges in $O\left(N=n^{2}\right)$ steps, so serial complexity is $O\left(N^{2}\right)$.
H. Define error at each step as:

$$
\epsilon_{t} \triangleq \sqrt{\sum_{i, j}\left(u_{i, j}^{t}-u_{i, j}\right)^{2}}
$$

H. For Jacobi, can show:

$$
\epsilon_{t} \leq\left(\cos \frac{\pi}{n+1}\right)^{t} \epsilon_{0} \stackrel{n \rightarrow \infty}{\approx}\left(1-\frac{\pi^{2}}{4} \cdot \frac{t}{n^{2}}\right) \epsilon_{0}
$$

Consider Jacobi in 1-D

$$
\begin{aligned}
h^{2} f_{i} & =-u_{i-1}+2 u_{i}-u_{i+1} \\
u_{i}^{(t+1)} & =\frac{1}{2}\left(u_{i-1}^{(t)}+u_{i+1}^{(t)}\right)+\frac{h^{2}}{2} f_{i} \\
& \Downarrow \\
u^{(t+1)} & =\underbrace{\left(I-\frac{1}{2} T_{n}\right)}_{\equiv R} \cdot u^{(t)}+\frac{h^{2}}{2} f \\
& \equiv R \cdot u^{(t)}+c
\end{aligned}
$$

Closer look at 1-D Jacobi's

 convergenceH. Consider total error at each step

$$
\begin{aligned}
\epsilon^{(t)} & \equiv u^{(t)}-u \\
& =R \cdot \epsilon^{(t-1)} \\
& =R^{t} \cdot e_{0}
\end{aligned}
$$

Closer look at 1-D Jacobi's convergence

H. Consider slightly broader class of weighted Jacobi methods

$$
\begin{aligned}
T_{n} u & =h^{2} f \equiv c \\
R_{w} & \equiv I-\frac{w}{2} T_{n} \\
u^{(t+1)} & =R_{w} u^{(t)}+\frac{w}{2} c \\
& \Downarrow \\
\epsilon^{(t)} & =R_{w}^{t} \epsilon^{(0)}
\end{aligned}
$$

1-D Poisson:

Eigendecomposition of T_{n}

H. Lemma: Eigenvalues and eigenvectors of T_{n} are

$$
\begin{array}{rlrl}
T_{n} z_{j} & =\lambda_{j} z_{j} \\
\lambda_{j} & =2\left(1-\cos \frac{\pi j}{n+1}\right) & \Longrightarrow \begin{aligned}
T_{n} & =Z \Lambda Z^{T} \\
Z Z^{T} & =I
\end{aligned} \\
z_{j}(k) & =\sqrt{\frac{2}{n+1}} \sin \frac{\pi j k}{n+1} & &
\end{array}
$$

Error "frequencies"

$$
\begin{aligned}
\epsilon^{(t)}=R_{w}^{t} \cdot \epsilon^{(0)} & =\left(I-\frac{w}{2} Z \Lambda Z^{T}\right)^{t} \cdot \epsilon^{(0)} \\
& =Z\left(I-\frac{w}{2} \Lambda\right)^{t} Z^{T} \cdot \epsilon^{(0)}
\end{aligned}
$$

$$
\Downarrow
$$

$$
Z^{T} \cdot \epsilon^{(t)}=\left(I-\frac{w}{2} \Lambda\right)^{t} Z^{T} \cdot \epsilon^{(0)}
$$

$$
\left(Z^{T} \cdot \epsilon^{(t)}\right)_{j}=\left(I-\frac{w}{2} \Lambda\right)_{j j}^{t}\left(Z^{T} \cdot \epsilon^{(0)}\right)_{j}
$$

Spectrum of R_w

For 1-D discrete Poisson, with $\mathbf{n}=99$

Faster information propagation?

". "Multigrid" idea
:. Approximate problem on fine grid by a coarser grid
:. Solve the coarse grid problem approximately
". Interpolate coarse grid solution onto fine grid, as an initial guess
". Recursively solve coarse grid problems
H. To work, coarse grid solution must be a good approximation to fine grid

Same idea applies elsewhere

H. Multilevel graph partitioning (METIS)
:. Coarsen graph via maximal independent set problem
:- Partition coarse graph, refine using Kernighan-Lin
H. Barnes-Hut and fast multipole method for, say, gravity problems
:. Approximate particles in a region by total mass, center of gravity
:- Divide regions recursively

Divide-and-conquer in multigrid

A. Spatial domain
H. Get an initial solution for an $n \times n$ grid by solving approximately on $n / 2 \times n / 2$ grid
.. Recurse
-. Frequency domain
". Think of error as sum of eigenvectors, e.g., sine-curves of different frequencies
". Solving on a particular grid "smooths" (dampens) high-frequency error

"Multigrids" in 1-D

$P^{(i)}=$ Problem on $2^{i}+1$ grid
$T^{(i)} x^{(i)}=b^{(i)}$
$P^{(3)} \cdots-\cdots-\cdots$
$P^{(2)} \longrightarrow-$
$P^{(1)}$

"Multigrids" in 2-D

$$
\begin{aligned}
& P^{(i)}=\text { Problem on }\left(2^{i}+1\right) \times\left(2^{i}+1\right) \text { grid } \\
& T^{(i)} x^{(i)}=b^{(i)} \\
& P^{(3)} P^{(2)}
\end{aligned}
$$

Multigrid operators

Restrict(3)

Restrict(2)

Interpolate(2)

Interpolate(1)

Multigrid operators

$$
\begin{aligned}
P^{(i)}: x^{(i)} & \equiv \text { Current estimated solution } \\
b^{(i)} & \equiv \text { Right-hand side } \\
R^{(i)} & : b^{(i-1)} \leftarrow R^{(i)}\left(b^{(i)}\right) \quad \Leftarrow \text { Restriction } \\
L^{(i)} & : x^{(i)} \leftarrow L^{(i-1)}\left(x^{(i-1)}\right) \Leftarrow \text { Interpolation } \\
S^{(i)} & : x_{\text {improved }}^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right)
\end{aligned}
$$

\Uparrow Solution operator (smoother)

Multigrid "V-cycle": Building block for the full multigrid algorithm

$$
\begin{aligned}
& \text { MGV }\left(b^{(i)}, x^{(i)}\right) \Leftarrow \text { Returns improved } x^{(i)} \text { for } T^{(i)} x^{(i)}=\boldsymbol{b}^{(i)} \\
& \text { if } i==1 \text { then } \\
& \quad \text { return exact solution of } P^{(1)} \\
& \text { else } \\
& \qquad x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right) \\
& r^{(i)} \leftarrow T^{(i)} \cdot x^{(i)}-b^{(i)} \\
& d^{(i)} \leftarrow L^{(i-1)}\left(\operatorname{MGV}\left(R^{(i)}\left(r^{(i)}\right), 0\right)\right) \\
& x^{(i)} \leftarrow x^{(i)}-d^{(i)} \\
& x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right) \\
& \quad \text { return } x^{(i)}
\end{aligned}
$$

Multigrid V-cycle

```
\(\operatorname{MGV}\left(b^{(i)}, x^{(i)}\right) \Leftarrow\) Returns improved \(x^{(i)}\) for \(T^{(i)} x^{(i)}=b^{(i)}\)
    if \(i==1\) then
        return exact solution of \(P^{(1)}\) Base case: 1 unknown
    else
        \(x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right)\)
\(r^{(i)} \leftarrow T^{(i)} \cdot x^{(i)}-b^{(i)}\)
        \(d^{(i)} \leftarrow L^{(i-1)}\left(\operatorname{MGV}\left(R^{(i)}\left(r^{(i)}\right), 0\right)\right)\)
    \(x^{(i)} \leftarrow x^{(i)}-d^{(i)}\)
    \(x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right)\)
    return \(x^{(i)}\)
```


Multigrid V-cycle

```
\(\operatorname{MGV}\left(b^{(i)}, x^{(i)}\right) \Leftarrow\) Returns improved \(x^{(i)}\) for \(T^{(i)} x^{(i)}=b^{(i)}\)
    if \(i==1\) then
        return exact solution of \(P^{(1)}\) Base case: 1 unknown
    else
        \(x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right) \quad\) Smooth (damps high-freq error)
    \(r^{(i)} \leftarrow T^{(i)} \cdot x^{(i)}-b^{(i)}\)
    \(d^{(i)} \leftarrow L^{(i-1)}\left(\operatorname{MGV}\left(R^{(i)}\left(r^{(i)}\right), 0\right)\right)\)
    \(x^{(i)} \leftarrow x^{(i)}-d^{(i)}\)
    \(x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right)\)
    return \(x^{(i)}\)
```


Multigrid V-cycle

```
\(\operatorname{MGV}\left(b^{(i)}, x^{(i)}\right) \Leftarrow\) Returns improved \(x^{(i)}\) for \(T^{(i)} X^{(i)}=b^{(i)}\)
    if \(i==1\) then
        return exact solution of \(P^{(1)}\) Base case: 1 unknown
    else
        \(x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right) \quad\) Smooths (damps high-freq error)
    \(r^{(i)} \leftarrow T^{(i)} \cdot x^{(i)}-b^{(i)} \quad\) Computes residual
    \(d^{(i)} \leftarrow L^{(i-1)}\left(\operatorname{MGV}\left(R^{(i)}\left(r^{(i)}\right), 0\right)\right) \quad\) Recursively solves
    \(x^{(i)} \leftarrow x^{(i)}-d^{(i)} \quad\) Corrects fine-grid solution
    \(x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right)\)
    return \(x^{(i)}\)
```


Multigrid V-cycle

```
\(\operatorname{MGV}\left(b^{(i)}, x^{(i)}\right) \Leftarrow\) Returns improved \(x^{(i)}\) for \(T^{(i)} x^{(i)}=b^{(i)}\)
    if \(i==1\) then
        return exact solution of \(P^{(1)}\) Base case: 1 unknown
    else
        \(x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right) \quad\) Smooths (damps high-freq error)
    \(r^{(i)} \leftarrow T^{(i)} \cdot x^{(i)}-b^{(i)} \quad\) Computes residual
    \(d^{(i)} \leftarrow L^{(i-1)}\left(\operatorname{MGV}\left(R^{(i)}\left(r^{(i)}\right), 0\right)\right) \quad\) Recursively solves
    \(x^{(i)} \leftarrow x^{(i)}-d^{(i)}\)
    \(x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right) \quad\) Smooth again
    return \(x^{(i)}\)
```


Multigrid V-cycle

$$
\begin{aligned}
& \text { MGV }\left(b^{(i)}, x^{(i)}\right) \Leftarrow \text { Returns improved } x^{(i)} \text { for } T^{(i)} x^{(i)}=b^{(i)} \\
& \text { if } i==1 \text { then } \\
& \quad \text { return exact solution of } P^{(1)} \\
& \text { else } \\
& x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right) \\
& r^{(i)} \leftarrow T^{(i)} \cdot x^{(i)}-b^{(i)} \\
& d^{(i)} \leftarrow L^{(i-1)}\left(\operatorname{MGV}\left(R^{(i)}\left(r^{(i)}\right), 0\right)\right) \\
& x^{(i)} \leftarrow x^{(i)}-d^{(i)} \\
& x^{(i)} \leftarrow S^{(i)}\left(b^{(i)}, x^{(i)}\right) \\
& \text { return } x^{(i)}
\end{aligned}
$$

Multigrid V-cycle: Correction step

$$
\begin{aligned}
& r^{(i)} \leftarrow T^{(i)} \cdot x^{(i)}-b^{(i)} \\
& d^{(i)} \leftarrow L^{(i-1)}\left(\operatorname{MGV}\left(R^{(i)}\left(r^{(i)}\right), 0\right)\right) \\
& x^{(i)} \leftarrow x^{(i)}-d^{(i)}
\end{aligned}
$$

Justification:

$$
\begin{aligned}
T^{(i)} d^{(i)} & =r^{(i)} \\
& =T^{(i)} x^{(i)}-b^{(i)} \\
\Longrightarrow b^{(i)} & =T^{(i)}\left(x^{(i)}-d^{(i)}\right)
\end{aligned}
$$

Multigrid V-cycle: Complexity

Serial complexity (2-D Poisson):

$$
\begin{aligned}
C(i) & =\left\{\begin{array}{cc}
O\left(4^{i}\right)+C(i-1) & i>1 \\
O(1) & i=1
\end{array}\right\} \\
C(m) & =\sum_{i=1}^{m} O\left(4^{i}\right)=O\left(4^{m}\right) \\
& =O(\text { no. of unknowns })
\end{aligned}
$$

Full multigrid algorithm

$\operatorname{FMG}\left(b^{(k)}, x^{(k)}\right)$
$x^{(1)} \leftarrow$ Exact solution to $P^{(1)}$
for $i=2$ to k do $x^{(i)} \leftarrow \operatorname{MGV}\left(b^{(i)}, L^{(i-1)}\left(x^{(i-1)}\right)\right)$

Full multigrid algorithm: Complexity

$$
\begin{aligned}
C(m) & =\sum_{k=1}^{m} O\left(4^{k}\right) \\
& =O\left(4^{m}\right)=O(\text { no. of unknowns }) \\
\text { PRAM } & =\sum_{k=1}^{m} O(k) \\
& =O\left(m^{2}\right)=O\left(\log ^{2}(\text { unknowns })\right)
\end{aligned}
$$

Full multigrid: Convergence

H. Theorem: After one FMG call,
:. error after <= . 5 * (error before)
". Independent of no. of unknowns (!)
H. Corollary: Can make error < any fixed tolerance in a fixed no. of steps, independent of grid size (!)

Administrivia

Two joint classes with CS 8803 SC

4. Tues 2/19: Floating-point issues in parallel computing by me
H. Tues 2/26: GPGPUs by Prof. Hyesoon Kim
:. Both classes meet in Klaus 1116E

Administrative stuff

I. New room (dumpier, but cozier?): College of Computing Building (CCB) 101
\#. Accounts: Apparently, you already have them
H. Front-end login node: ccil.cc.gatech.edu (CoC Unix account)
:. We "own" warp43-warp56
". Some docs (MPI): http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
h. Sign-up for mailing list: https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

Homework 1:

 Parallel conjugate gradientsH. Implement a parallel solver for $\mathrm{Ax}=\mathrm{b}$ (serial C version provided)
E. Evaluate on three matrices: 27-pt stencil, and two application matrices
H. "Simplified:" No preconditioning
A. Bonus: Reorder, precondition
H. Performance models to understand scalability of your implementation
H. Make measurements
\#. Build predictive models
\#. Collaboration encouraged: Compare programming models or platforms

Some details on multigrid operators

Solution operator (smoother), $S^{(i)}$:

 Weighted JacobiRecall: Jacobi

Weighted Jacobi

Restriction operator, $R^{(i)}$

In 2-D: Average with all 8 neighbors

Interpolation operator, $L^{(i)}$

In 2-D: Average with all 8 neighbors

Coarse Grid Function

Interpolated Fine Grid Function

Convergence (1-D)

Convergence (2-D)

True Solution

norm(res(m+1) $) /$ norm(res(m) $)$

Right Hand Side

Parallelizing multigrid

	55	5	5	5	55																					
	55	5	5	55	55	55		4		4		4	4	4												
	55	5	5	5	55	5																				
	55	5	5	55	55	3 5		4		4			4	4			3	3			3					
	55	5	5	55	55	3 5																				
	55	5	5	55	55	5				,		4	4	,												
	55	5	5	55	55	35																				
	55	5	5	5	55	5		d	d	,		d	4	,			3	,			3					2
						31.2		545		24.5	5.54	15	52	215			3	3			2					
						5							$\underline{1}$	15	5											
						45									5											
						5									5											
						445									5		3	3								
						5									5											
						45									5											
						5									5											
						3									5		3	3			2					
						5		5	5	5	-	5	5	5	5											
						4				4																
						3				3				3			3									
						2								2							2					

Performance model (2-D)

H. Domain: $2^{m}+1 \times 2^{m}+1$ grid
H. Processors: $p=4^{k}$, in a $2^{k} \times 2^{k}$ grid
H. Each processor owns $2^{m-k} \times 2^{m-k}$ points
:. Cost of one level j of V-cycle
H. If $\mathrm{j} \geq \mathrm{k}: \mathrm{O}\left(4^{-h}\right)$ flops $+\mathrm{O}(1) \cdot \alpha+\mathrm{O}\left(2^{-k}\right) \cdot \beta^{-1}$
:. If $\mathrm{<}$: E O(1) flops $+\mathrm{O}(1) \cdot \alpha+\mathrm{O}(1) \cdot \beta^{-1}$
\#. Sum over j to get total V-cycle cost

Parallel Poisson solvers compared

	Flops	Messages	Words
MG	$\frac{N}{p}+\log p \log N$	$\log ^{2} N$	$\sqrt{\frac{N}{p}}+\log p \log N$
FFT	$\frac{N \log N}{p}$	\sqrt{p}	$\frac{N}{p}$
SOR	$\frac{N^{\frac{3}{2}}}{p}$	\sqrt{N}	$\frac{N}{p}$

Multigrid on unstructured meshes

Multigrid on an unstructured mesh

A. How to coarsen?
*. Can't just pick every other point
H. Maximal independent sets
E. How to restrict? Interpolate?
E. How to "smooth?"
A. How to handle coarsest meshes?
H. Switch to fewer processors?
:. Switch to another solver?

