Parallel sparse linear algebra (2)

Prof. Richard Vuduc
Georgia Institute of Technology
CSE/CS 8803 PNA, Spring 2008
[L.10] Thursday, February 7, 2008

Sources for today's material

\#. Mike Heath (UIUC)
\#. CS 267 (Yelick \& Demmel, UCB)
In John Gilbert (UCSB)
.. Xiaoye (Sherry) Li (LBNL)
H. Direct methods for sparse matrices, by Duff, Erisman, and Reid
H. Esmond Ng (LBNL)

Algorithms for 2-D (3-D) Poisson, $N=n^{2}\left(=n^{3}\right)$

Algorithm	Serial	PRAM	Memory	\# procs
Dense LU	\mathbf{N}^{3}	\mathbf{N}	\mathbf{N}^{2}	\mathbf{N}^{2}
Band LU	$\mathrm{N}^{2}\left(\mathrm{~N}^{7 / 3}\right)$	\mathbf{N}	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{4 / 3}\right)$
Jacobi	$\mathbf{N}^{2}\left(\mathbf{N}^{5 / 3}\right)$	$\mathbf{N}\left(\mathbf{N}^{2 / 3}\right)$	\mathbf{N}	\mathbf{N}
Explicit inverse	N^{2}	$\log \mathrm{~N}$	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Conj. grad.	$\mathbf{N}^{3 / 2}\left(\mathbf{N}^{4 / 3}\right)$	$\mathbf{N}^{1 / 2(1 / 3)} \log \mathbf{N}$	\mathbf{N}	\mathbf{N}
RB SOR	$\mathbf{N}^{3 / 2}\left(\mathbf{N}^{4 / 3}\right)$	$\mathbf{N}^{1 / 2}\left(\mathbf{N}^{1 / 3}\right)$	\mathbf{N}	\mathbf{N}
Sparse LU	$\mathbf{N}^{3 / 2}\left(\mathbf{N}^{2}\right)$	$\mathbf{N}^{1 / 2}$	$\mathbf{N} \log \mathbf{N}\left(\mathbf{N}^{4 / 3}\right)$	\mathbf{N}
FFT	$\mathrm{N} \log \mathrm{N}$	$\log ^{2}$	\mathbf{N}	\mathbf{N}
Multigrid	\mathbf{N}	$\log ^{2} \mathbf{N}$	\mathbf{N}	\mathbf{N}
Lower bound	\mathbf{N}	$\log ^{\mathbf{N}}$	\mathbf{N}	

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

Anatomy of a sparse direct solver

$$
P_{r} \cdot A \cdot P_{c}^{T}=L U
$$

H. Order equations \& variables to minimize fill in L, \cup [Combinatorial]
H. Symbolic factorization [Allocate memory for L, U]
E. Numerical factorization [Dominates run-time]
H. Triangular solves [Small fraction, unless many RHS]

Review: Fill-reducing orderings

Total nnz = 233

Total nnz = 207

Factors $\mathrm{L}+\mathrm{U}$ using min-dagrea ondering

Ordering: Markowitz criterion ('57)

H. At elimination stage k :
:. \quad Let $r_{i}^{(k)}=n n z($ row $i), c_{j}^{(k)}=n n z(c o l j)$, in uneliminated submatrix
:. Choose pivot entry a_{ij} (i.e., swap row \& col) that minimizes:

$$
\left(r_{i}^{(k)}-1\right) \times\left(c_{j}^{(k)}-1\right)
$$

:. Don't forget about numerical values, too! (E.g., threshold)
H. Problem: Expensive!

Nested dissection

Finding good separators

H. Multilevel schemes
:- Chaco [Hendrickson \& Leland '94]
\#. Metis [Karypis \& Kumar '95]
:. Spectral bisection [Simon, et al. '90+]
\#. Geometric and spectral bisection [Chan, Gilbert, \& Teng '94]

Sources of parallelism: Elimination trees

A In natural order

Cholesky facter, flops=25

Cholesky facter, flops=35

Cholesky factor

$\mathbf{G}^{+}(\mathbf{A})$

T(A)
"Elimination tree"

$$
T(A): \operatorname{parent}(j)=\min \left\{i>j:(i, j) \in G^{+}(A)\right\}
$$

Elimination tree defines column dependencies in A .

Can get $T(A)$ from $G(A)$ in $O\left(n n z\right.$ * $\alpha(n n z)$), and $G^{+}(A)$ from $T(A)$ in $O(n n z(L))$.

Elmination tree

Multifrontal methods (e.g., [Liu '92])

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
B & V^{T} \\
V & C
\end{array}\right) \\
& =\left(\begin{array}{cc}
L_{B} & 0 \\
V L_{B}^{-T} & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & C-V B^{-1} V^{T}
\end{array}\right)\left(\begin{array}{cc}
L_{B}^{T} & L_{B}^{-1} V^{T} \\
0 & I
\end{array}\right)
\end{aligned}
$$

where:

$$
B=L_{B} L_{B}^{T} \text { (Cholesky factorization) }
$$

Observe:

$$
-V B^{-1} V^{T}=-\left(V L_{B}^{-T}\right)\left(L_{B}^{-1} V^{T}\right)=-\sum_{k=1}^{j-1}\left(\begin{array}{c}
l_{j, k} \\
\vdots \\
l_{n, k}
\end{array}\right)\left(l_{j, k} \cdots l_{n, k}\right)
$$

For each node of T from leaves to root:

- Sum own row/col of A with children's Update matrices into Frontal matrix
- Eliminate current variable from Frontal matrix, to get Update matrix
- Pass Update matrix to parent

For each node of T from leaves to root:

- Sum own row/col of A with children's Update matrices into Frontal matrix
- Eliminate current variable from Frontal matrix, to get Update matrix
- Pass Update matrix to parent

For each node of T from leaves to root:

- Sum own row/col of A with children's Update matrices into Frontal matrix
- Eliminate current variable from Frontal matrix, to get Update matrix
- Pass Update matrix to parent

Improving memory behavior: Supernodes

Complications in the unsymmetric (sparse LU) case

Need for numerical pivoting in LU

H. Partial pivoting: Hard to implement scalably for sparse factorization
A. Not needed if A is SPD
\#. Low cost in dense case, but not in sparse
H. Alternative: Static pivoting (e.g., SuperLU_DIST)
A. Before factor, scale and permute A to maximize diagonal: $P_{r}^{*} D_{r}^{*} A^{*} D_{c}=A^{\prime}$
H. Find P_{r} by weighted bipartite matching on $G(A)$
A. During factorization, replace tiny pivots with $\sqrt{\epsilon}\|A\|$
F. Iterative refinement if necessary (future lecture)

Static pivoting via weighted bipartite matching

H. Maximize diagonal entries (sum or product [sum of logs])
:. "Hungarian" algorithm (e.g., MC64): O(n* $\left.(m+n)^{*} \log n\right)$
H. Auction algorithm (more parallel): $\mathrm{O}\left(\mathrm{n}^{*} \mathrm{~m}^{*} \log \left(\mathrm{n}^{*} \mathrm{C}\right)\right)$

Source: X. Li (2006)

Source: X. Li (2006)

Ordering for sparse LU

H. Earlier examples implicitly show or assume symmetric structure
H. Options in the unsymmetric case
H. Symmetric ordering for $\mathrm{A}^{\top} \mathrm{A}$, based on theorem [George \& Ng '87]:

$$
\begin{array}{rcl}
R^{T} R=A^{T} A & \text { and } & P A=L U \\
\Longrightarrow \operatorname{struct}(L+U) & \subseteq & \operatorname{struct}\left(R+R^{T}\right) \text { for any } P
\end{array}
$$

H. Static pivoting (shortly): Similar theorem holds for $\mathrm{R}^{\top} R=A^{\top}+A$ (without P)
". "Symmetrization-free" [Amestoy, Li, \& Ng '03]

A

$A^{\top} A$

Problem: Elimination tree (DAG) not known until pivoting is done

H. Symbolic and numerical factorization stages become interleaved
I. Option 1: Use elimination tree of $\mathrm{A}^{\top} \mathrm{A}$
\#. Bound sparsity, parallelism
:. Update tree on-the-fly [Demmel, Gilbert, \& Li '97]
H. Option 2: Pivot statically

Supernode structure in L, not U

Factors L+U

Data layout/distribution

Process Mesh

Storage of block column of L

Sparse LU software

H. SuperLU [Xiaoye "Sherry" Li @ LBNL]
H. MUMPS [Amestoy, et al.]
H. UMFPACK [Davis @ UFL]
.. WSMP [Gupta @ IBM]

Open problems (suggested by Sherry Li ‘07)

H. Optimizing parallel performance: blocking, tuning, reducing/hiding latency
:. Graph partitioning ordering for unsymmetric case
H. Scalability of sparse triangular solve
:. Efficient incomplete-LU (ILU)
:. Optimal complexity sparse factorization
h. Fast multipole for matrix inversion - J. Xia's dissertation (UCB, now @ UCLA)
.. Latency-avoidant LU \& QR

Landscape of $A x=b$ solvers

	Iterative $y^{\prime}=A y$	Direct $A=L U$	More general
General A	GMRES, BiCGStab, ...	Pivoting LU	
$A=A^{\top}$	Conjugate gradient, ...	Cholesky	
Less sto	(if sparse)		robust

Administrivia

Administrative stuff

I. New room (dumpier, but cozier?): College of Computing Building (CCB) 101
\#. Accounts: Apparently, you already have them
H. Front-end login node: ccil.cc.gatech.edu (CoC Unix account)
:. We "own" warp43-warp56
". Some docs (MPI): http://www-static.cc.gatech.edu/projects/ihpcl/mpi.html
h. Sign-up for mailing list: https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

Homework 1:

 Parallel conjugate gradientsH. Implement a parallel solver for $\mathrm{Ax}=\mathrm{b}$ (serial C version provided)
E. Evaluate on three matrices: 27-pt stencil, and two application matrices
H. "Simplified:" No preconditioning
A. Bonus: Reorder, precondition
H. Performance models to understand scalability of your implementation
H. Make measurements
\#. Build predictive models
\#. Collaboration encouraged: Compare programming models or platforms

