: Performance metrics (cont’d)
I: Parallel programming models

and mechanics

Prof. Richard Vuduc

Georgia Institute of Technology
CSE/CS 8803 PNA, Spring 2008
[L.05] Tuesday, January 22, 2008

Algorithms for 2-D (3-D) Poisson, N=n? (=n?)

Dense LU
Band LU N2 (N7/3) N N3/2 (N5/3) N (N4/3)
Jacobi N2 (N°/3) N (N2/3) N N
Explicit inverse N2 log N N2 N?2
Conj. grad. N3/2 (N4/3) N1/2(173) |og N N N
RB SOR N3/2 (N4/3) N2 (N1/3) N N
Sparse LU N32 (N?) N1/2 N log N (N%9) N
FFT N log N log N N N
Multigrid N log2 N N N
Lower bound N log N N

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

Sources for today’s material

== Mike Heath at UIUC
== CS 267 (Yelick & Demmel, UCB)

Efficiency and scalability metrics
(Wrap-up)

Example: Summation using a tree
algorithm

o e

== Efficiency

<«—— n/p —>|<log p >

_Cl T 1
Ep_C %TH— 1 T 14 2]
p plogp + - logp

Basic definitions

Memory complexity Storage for given problem (e.g., words)

Amount of work for given problem

Computational complexity ©.q., flops)

Processor speed Ops / time (e.g., flop/s)

Elapsed wallclock

Execution time
(e.g., secs)

(No. procs) * (exec. time)
le.g., processor-hours]

QA=< = Z

Computational cost

Parallel scalablility

== Algorithm is scalable if

Ep:C =0O(1) asp —
p

== Why use more processors”?

Solve fixed problem in less time

Solve larger problem in same time (or any time)

Obtain sufficient aggregate memory

Tolerate latency and/or use all available bandwidth (Little’s Law)

s this algorithm scalable”?

== No, for fixed problem size, exec. time, and work / proc.

== Determine isoefficiency function for which efficiency is constant

C 1
p= o R . = 5 = F (const.)
Ch n+plogp 1+ -logp
—
n(p) = ©O(plogp)

== But then execution time grows with p:

n
1y = > + logp = O(log p)

A simple model of communication
performance

Time to Send a Message
Time (Usec)

1500

o A 74
A

39

T3E/Shm
T3E/MPI
IBM/LAPI

IBM/MPI
Quadrics/Shm
Quadrics/MPI
Myrinet/GM
Myrinet/MPI
GigE/VIPL
GigE/MPI

L Xl g R 2

0

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

Size (bytes)

10

L atency and bandwidth model

== Model time to send a message in terms of latency and bandwidth

t(n) = a+%

== Usually have cost(flop) << 1/B << o

One long message cheaper than many short ones

Can do hundreds or thousands of flops for each message

== Efficiency demands large computation-to-communication ratio

11

Empirical latency and (inverse)
bandwidth (psec) on real machines

machine o p

T3E/Shm 1.2 0.003
T3E/MPI 6.7 0.003
IBM/LAPI 9.4 0.003
IBM/MPI 7.6 0.004
Quadrics/Get 3.267| 0.00498
Quadrics/Shm 1.3 0.005
Quadrics/MPI 7.3 0.005
Myrinet/ GM 7.7 0.005
Myrinet/MPI 7.2 0.006
Dolphin/MPI 7.767| 0.00529
Giganet/VIPL 3.0 0.010
GigE/VIPL 4.6 0.008
Gige/MPI 5.854| 0.00872

12

Time to Send a Message
Time (Usec)

1500

o A 74
A

39

T3E/Shm
T3E/MPI
IBM/LAPI

IBM/MPI
Quadrics/Shm
Quadrics/MPI
Myrinet/GM
Myrinet/MPI
GigE/VIPL
GigE/MPI

L Xl g R 2

0

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

Size (bytes)

13

Time to Send a Message (Model)
Time (Usec)

0.0000

o
Z

Z

o
-,
O

8.7298

T3E/Shm
T3E/MPI
IBM/LAPI

6.2233

IBM/MPI
Quadrics/Shm
Quadrics/MPI
Myrinet/GM
Myrinet/MPI

L Xl g R 2

GigE/VIPL
GigE/MPI

40

1.0000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

Size (bytes)

14

Latency on some current machines
(MPI| round-trip)

8-byte Roundtrip Latency

25 44 Z

| [MPI ping-pong

1L

SP/Fed

N
o

Roundtrip Latency (usec)

-
o

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron
Source: Yelick (UCB/LBNL)

15

End-to-end latency (1/2 round-trip) over time

1000
® 169
100
€93 e 83
73
~ 63
] * 50
3
3 36.34
> ¢ 34 ? 35 e34 ? 6
g ®27.9 i >k i
w -
E . %5125%58.91
® 14,2365 I
o1 ey ® 12-080% 1 o2y
10 ® 5544 €925
¢6.526 ® 6.974% 712755 ©6.905
® 4.81
*3 3.3
e2.815 206
*D.2
1.7
®1.245
1
1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
Year

Source: Yelick (UCB/LBNL)

16

Bandwidth vs. Message Size

400 A
350
T —l— —il- —i |
300 = —
—— T3E/MPI
250 —- T3E/Shmem
’8‘ —&— |BM/MPI
% IBM/LAPI
=3 —¥— Compagq/Put
< 200 =@~ Compaq/Get
3 —e ® —— M2K/MP!
g / \ —— M2K/GM
& ——— Dolphin/MPI
150 - ~_
—&— Giganet/VIPL
SysKonnect
100 ' —
_~ ¢ & ¢
7 /
-
50
0]]]]]] 1
2048 4096 8192 16384 32768 65536 131072
Message Size (Bytes)

Source: Mike Welcome (NERSC)

17

Parallel programming models

A generic parallel architecture

== Physical location of memories, processors? Connectivity?

Proc Proc
Proc

Interconnection
Network

|
|
_L Memory Memory Memory

19

What is a “parallel programming
model”?”

== Languages + libraries composing abstract view of machine

== Major constructs

== Control: Create parallelism? Execution model?

== Data: Private vs. shared?

== Synchronization: Coordinating tasks? Atomicity?

== Variations in models

Reflect diversity of machine architectures

Imply variations in cost

20

Running example: Summation

s=> f(a:)
1=1

Questions: Where is “A”? Which processors do what? How to combine?

; f()
b

Compute the sum,

A[1..n]

f(A[1..n])

21

Programming model 1:
Shared memory

== Program = collection of threads of control
== Each thread has private variables

== May access shared variables, for communicating implicitly and synchronizing

Shared memory

S] - ..
y=.S.. ;/ —\\ -

/|
T Private i: 8
memory

£

3
AL

22

Need to avoid race conditions:
Use locks

== Race condition (data race): Two threads access a variable, with at least
one writing and concurrent accesses

shared int s = 0;

Thread 1 Thread 2
fori=0, n/2-1 fori=n/2, n-1
s =s + f(A[i]) s = s + f(A[i])

23

Need to avoid race conditions:
Use locks

== EXxplicitly lock to guarantee atomic operations

shared int s = 0;
shared lock Ik;

Thread 1 Thread 2
local s1=0 local s2=0
fori=0, n/2-1 fori=n/2, n-1
local_s1 =local_s1 + f(A[i]) local_s2= local_s2 + f(A[i])
lock(lk); lock(lk);
s =s + local_s1 s =s +local_s2
unlock(lk); unlock(lk);

24

Machine model 1a:
Symmetric multiprocessors (SMPs)

== All processors connect to large shared memory
== Challenging to scale both hardware & software > 32 procs

OEONNGC

1 $ IR IR

| |

|
shared $

memory

25

1800

1600

1400

1200

1000

800

800

MFlops/second/processor

400

200

Performance of Spectral Shallow Water Model

(IBM pb90 experiments)
- T T T
1DrOCs, =t
\ . 16 procs. —a—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -+ 24procs. —8— -
| |

T5 T10 T21 T42 T85
Horizontal Resolution (16 verticzl levels)

Source: Pat Worley (ORNL)

26



Machine model 1b: Simultaneous
multithreaded processor (SMT)

== Multiple thread contexts share memory and functional units

== Switch among threads during long-latency memory ops

| |

shared $, shared floating point units, etc.

Memory




Programs
running in

parallel

Sub-
problem
A

Serial

Code Concurrent
threads of
computation

Sub-
problem
B

Subproblem A

Hardware
LR streams
(128)

Unused streams - -
|:| - Instruction
[ ]

] Ready

Pool;

[ 1]

Pipeline of
executing
instructions

Cray El Dorado processor
Source: John Feo (Cray)

28



Machine model 1c¢:
Distributed shared memory

== Memory logically shared, but physically distributed

== Challenge to scale cache coherency protocols > 512 procs

@

1 $

@

1 $

@

1 $

network

memory

memory

memory

Cache lines (pages) must
be large to amortize
overhead = locality is
critical to performance

29



Programming model 2:
Message passing

== Program = named processes
== No shared address space

== Processes communicate via explicit send/receive operations

s: 12 s: 14 s: 11
receive Pn,s

R

y=.s.. i: 2 i:3/ \i:1

send P1,s |

Network

30



Example: Computing A[1]+A|2]

Processor 1: Processor 2:
X = A[1] X = A[2]
SEND x — Proc. 2 SEND x — Proc. 1
RECEIVE y < Proc. 2 RECEIVE y < Proc. 1
S=X+Yy S=X+Yy

== \What could go wrong in the following code”

Scenario A: Send/receive is like the telephone system

Scenario B: Send/receive is like the post office

31



Machine model 2a:
Distributed memory

== Separate processing nodes, memory

== Communicate through network interface over interconnect

memory memory

memory

[ interconnect ]

32



Programming model 2D:
Global address space (GAS)

== Program = named threads
== Shared data, but partitioned over local processes

== |mplied cost model: remote accesses cost more

| |
Shared memory

s[0]: 22T s[11: 27 /\ s[n]: 27

y = ..s[i] ... —~ \

W) i 5 Private i- 8
/ memory

N s[myThread] = ...

33



Machine model 2b:
Global address space

== Same as distributed, but NI can access memory w/o interrupting CPU

== One-sided communication; remote direct memory access (RDMA)

! ¢”' ZN.

V

memory memory

[ interconnect ]

34



Programming model 3:
Data parallel

Program = single thread performing parallel operations on data
Implicit communication and coordination; easy to understand
Drawback: Not always applicable

Examples: HPF, MATLAB/StarP

A[1..n]

l f(-)

f(A[1..n])

35



Machine model 3a: Single
instruction, multiple data (SIMD)

== Control processor issues instruction, (usually) simpler processors execute
== May “turn off” some processors

== Examples: CM2, Maspar

control processor

(P NI (PO N NI NI O

memory

memory memory memory memory

[ interconnect ]

36



Machine model 3b:
Vector processors

== Single processor with multiple functional units

Perform same operation

Instruction specifies large amount of parallelism, hardware executes on a subset
== Rely on compiler to find parallelism

== Resurgent interest

Large scale: Earth Simulator, Cray X1

Small scale: SIMD units (e.g., SSE, Altivec, VIS)

37



Vector hardware

== Operations on vector registers, O(10-100) elements / register

r1 r2 L vri L vr2
\@/ (logically, performs # elts
| adds in parallel)

r3 L vr3

== Actual hardware has 2-4 vector pipes or lanes

38



Programming model 4:
Hybrid

== May mix any combination of preceeding models
MPI + threads
DARPA HPCS languages mix threads and data parallel in global address space

39



Machine model 4:
Clusters of SMPs (CLUMPs)

Use SMPs as building block nodes
Many clusters (e.g., GT “warp” cluster)

Best programming model?
= “Flat” MPI

== Shared mem in SMP, MP| between nodes

40



Administrivia




Administrative stuft

== No office hours today (maybe “virtual” only —AIM:VuducOfficeHours)
== Accounts: Apparently, you already have them or will soon (!)
== [rylogging into ‘warp1’ with your UNIX account password
== [fit doesn’t work, go see TSO Help Desk (and good luck!)
== CCB 148/ M-F 7a-5p / 404.894.7065 / AIM:tsohlpdsk
== |[HPCL mailing list:

== https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

42


https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

Shared memory programming:
POSIX Threads and OpenMP




Programming model 1:
Shared memory

== Program = collection of threads of control
== Each thread has private variables

== May access shared variables, for communicating implicitly and synchronizing

Shared memory

S ] - ..
y=.S.. ;/ —\\ -

/|
T Private i: 8
memory

£

3
AL

44



Shared memory programming

== Libraries for existing languages

== POSIX Threads (PThreads), Solaris Threads: Portable, low-level library
== OpenMP: Pragma-based, targets scientific computing apps
== Intel Thread Building Blocks (TBB): pThreads + OpenMP

== |Language extensions

45



Common notions of thread creation

cobegin _ id = fork (taskl, al);
taskl (al); task2 (a2);
task2 (a2): join Gid);

coend ,

v = future (taskl (al));

e = .. VoL

46



POSIX Threads (P Threads)

== Portable system call interface for creating and synchronizing threads
== | Nhreads share all global variables

== Fork/join style

errcode = pthread_create (&thread_1id,
&thread_attribute,
&thread_fun,
&fun_arg)

erFEode = pthread_join (thread_id, NULL);

== Reference: https://computing.linl.gov/tutorials/pthreads/

47


https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/

Loop-level parallelism

== May fork threads at any time, e.g., within a loop
.. A[n];

for (i = 0; i < n; ++1)
pthread_create (.., &task, &i);

== Must have sufficient granularity to mask thread-creation overhead

48



Low-level policy control

== Detached state: Avoid pthread_join calls
== Scheduling parameters: priority, policy (FIFO vs. round-robin)

== Contention scope: With what thread does this thread compete for CPU

49



Barriers for global synchronization
(Optional extension)

== Usage outline

pthread_barrier_t b;
pthread_barrier_init (&b, NULL, 3); 3

pthread_barrier_wait (&b);

pthread_barrier_destroy (&b);

50



Mutual exclusion locks (mutexes)

== Basic usage

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_init (&lock, NULL);

Ethread_mutex_1ock (&lock);

pthread_mutex_unlock (&lock) ;
== Beware of deadlock

Thread 1 Thread 2

lock (a); lock (b);
lock (b); lock (a);
-

51



OpenMP: An API for multithreaded
shared-memory programming

Programmer identifies serial and parallel regions, not threads

master
thread

{ parallel region } { parallel region }

== Library + directives (requires compiler support)

== Official website: http://www.openmp.org

Also: https://computing.linl.gov/tutorials/openMP/

52


http://www.openmp.org
http://www.openmp.org
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

Simple example

int main(Q)

{

printf (“hello, world!\n”);

return O;

}

53



Simple example

int main(Q)
{

omp_set_num_threads (16);

#pragma omp parallel

{
printf (“hello, world!\n”);
}

return O;
}

54



Concurrent loops

== May parallelize a loop, but you must check dependencies

s = 0;

s += x[1];

for (% = 0; 1 < n; ++1)

#pragma omp parallel for \
shared (s)
for (1 =0; 1 < n; ++1)
#pragma omp critical
s += X[1];

#pragma omp parallel for \
reduction(+: s)
for (1 =0; 1 < n; ++1)
s += x[1];

55



L.oop scheduling

== Use “schedule” clause to partition loop iterations

== Static: k iterations per thread, assigned statically

#pragma omp parallel for schedule static(k) ..

== Dynamic: k iterations per thread, using logical work queue
#pragma omp parallel for schedule dynamic(Ck) ..

== Guided: k iterations per thread initially, reduced with each allocation

#pragma omp parallel for schedule guided(k) ..

== Run-time: Use value of environment variable, OMP _SCHEDULE

56



Synchronization primitives

g m O . . # It- -I
Critical sections No explicit locks {p_'j‘?“‘a omp critica

Barriers #pragma omp barrier

omp_set_lock (1);

Explicit locks May require flushing )
omp_unset_lock (1);

Single-thread
regions

#pragma omp single

Inside parallel regions { /* executed once */ }

57



“In conclusion...”




Backup slides




Network topology

== Of great interest historically, particularly in mapping algorithms to networks
= Key metric: Minimize hops
== Modern networks hide hop cost, so topology less important

== Large gap in hardware/software latency: On IBM SP, cf. 1.5 usec to 36 usec

== [opology affects bisection bandwidth, so still relevant

60



Bisection bandwidth

== Bandwidth across smallest cut that divides network in two equal halves

== |mportant for all-to-all communication patterns

Not a
bisection
— cut

Bisection _
cut

bisection bw = link bw bisection bw = sqrt(n) * link bw

61



Linear and ring networks

Linear — — — — — —
Diameter ~ n/3
Bisection = 1

Ring/Torus OO0 0 o
Diameter ~ n/4
Bisection = 2

62



Multidimensional meshes and tori

2-D mesh 2-D torus
Diameter ~ 2*sqgrt(n) Diameter ~ sqrt(n)
Bisection = sqrt(n) Bisection = 2*sqrt(n)
o —0 0 0 0 0

<& >
e S e S S | lololo oo lo
o000 0o =t =t = — -
o900 0 09 LO10—10—10—1010—
PSP S S S S ¢ L 91000900
e

63



Hypercubes

2= No. of nodes = 29 for dimension d
Diameter = d

Bisection = n/2

o B

64



Trees

== Diameter =logn
== Bisection bandwidth = 1

== Fat trees: Avoid bisection problem using fatter links at top

1t Il aSananan
2R b

@
-0
@
-0

@
-0
@
-0

65



‘ Butterfly networks

== Diameter =logn

== Bisection =n

§868688




Topologies in real machines

Cray XT3, XT4 3D torus

BG/L 3D torus

SGI Altix Fat tree

Newer Cray X1 4D hypercube*

Millennium (UCB, Myricom) Arbitrary*

Older HP Alphaserver (Quadrics) Fat tree
IBM SP ~ Fat tree
SGl Origin Hypercube

Intel Paragon 2D mesh

7 BBN Butterfly Butterfly

67



Evolution of distributed memory
machine networks

== Message queues replaced by direct memory access (DMA)
== Wormbhole routing: Processor packs/copies, initiates transfer, then goes on

== Message passing libraries provide store-and-forward abstraction

May send/receive between any pair of nodes

Time proportional to distance since each processor along path participates

68



