
I: Performance metrics (cont’d)
II: Parallel programming models
and mechanics

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA, Spring 2008

[L.05] Tuesday, January 22, 2008

1

Algorithm Serial PRAM Memory # procs

Dense LU

Band LU

Jacobi

Explicit inverse

Conj. grad.

RB SOR

Sparse LU

FFT

Multigrid

Lower bound

N3 N N2 N2

N2 (N7/3) N N3/2 (N5/3) N (N4/3)

N2 (N5/3) N (N2/3) N N

N2 log N N2 N2

N3/2 (N4/3) N1/2(1/3) log N N N

N3/2 (N4/3) N1/2 (N1/3) N N

N3/2 (N2) N1/2 N log N (N4/3) N

N log N log N N N

N log2 N N N

N log N N

Algorithms for 2-D (3-D) Poisson, N=n2 (=n3)

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

2

Sources for today’s material

Mike Heath at UIUC

CS 267 (Yelick & Demmel, UCB)

3

Efficiency and scalability metrics
(wrap-up)

4

Example: Summation using a tree
algorithm

Efficiency

Ep ≡
C1

Cp
≈ n

n + p log p
=

1
1 + p

n log p

5

Basic definitions

M

W

V

T

C

Memory complexity Storage for given problem (e.g., words)

Computational complexity
Amount of work for given problem
(e.g., flops)

Processor speed Ops / time (e.g., flop/s)

Execution time
Elapsed wallclock
(e.g., secs)

Computational cost
(No. procs) * (exec. time)
[e.g., processor-hours]

6

Parallel scalability

Algorithm is scalable if

Why use more processors?

Solve fixed problem in less time

Solve larger problem in same time (or any time)

Obtain sufficient aggregate memory

Tolerate latency and/or use all available bandwidth (Little’s Law)

Ep ≡
C1

Cp
= Θ(1) as p→∞

7

Is this algorithm scalable?

No, for fixed problem size, exec. time, and work / proc.

Determine isoefficiency function for which efficiency is constant

But then execution time grows with p:

Ep ≡
C1

Cp
≈ n

n + p log p
=

1
1 + p

n log p
= E (const.)

=⇒
n(p) = Θ(p log p)

Tp =
n

p
+ log p = Θ(log p)

8

A simple model of communication
performance

9

1

6

39

241

1500

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

T3E/Shm
T3E/MPI
IBM/LAPI
IBM/MPI
Quadrics/Shm
Quadrics/MPI
Myrinet/GM
Myrinet/MPI
GigE/VIPL
GigE/MPI

Time to Send a Message
Time (μsec)

Size (bytes)

10

Latency and bandwidth model

Model time to send a message in terms of latency and bandwidth

Usually have cost(flop) << 1/β << α

One long message cheaper than many short ones

Can do hundreds or thousands of flops for each message

Efficiency demands large computation-to-communication ratio

t(n) = α +
n

β

11

Empirical latency and (inverse)
bandwidth (μsec) on real machines

12

1

6

39

241

1500

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

T3E/Shm
T3E/MPI
IBM/LAPI
IBM/MPI
Quadrics/Shm
Quadrics/MPI
Myrinet/GM
Myrinet/MPI
GigE/VIPL
GigE/MPI

Time to Send a Message
Time (μsec)

Size (bytes)

13

Time to Send a Message (Model)
Time (μsec)

Size (bytes)

1.0000

6.2233

38.7298

241.0285

1500.0000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

T3E/Shm
T3E/MPI
IBM/LAPI
IBM/MPI
Quadrics/Shm
Quadrics/MPI
Myrinet/GM
Myrinet/MPI
GigE/VIPL
GigE/MPI

14

Latency on some current machines
(MPI round-trip)

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

18.5

9.6

22.1

24.2

6.6

14.6

8-byte Roundtrip Latency

R
ou

nd
tr

ip
 L

at
en

cy
 (u

se
c)

MPI ping-pong

Source: Yelick (UCB/LBNL)

15

Latency over Time

169

93

34
27.9

63

2.2

3

21
25

50

35

73

11

83

34

6.526

1.245

19.4985
21.4725

9.944

1.7

2.815

14.2365
12.005

6.9745

18.916

36.34

7.2755

3.3

12.0805

9.25

2.6

6.905

11.027

4.81

1

10

100

1000

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Year

L
a
te

n
cy

 (
u

se
c)

End-to-end latency (1/2 round-trip) over time

Source: Yelick (UCB/LBNL)

16

Bandwidth vs. Message Size

Source: Mike Welcome (NERSC)

17

Parallel programming models

18

A generic parallel architecture

Physical location of memories, processors? Connectivity?

Proc

Interconnection
Network

Memory

ProcProcProc
Proc Proc

MemoryMemory Memory Memory

19

What is a “parallel programming
model?”

Languages + libraries composing abstract view of machine

Major constructs

Control: Create parallelism? Execution model?

Data: Private vs. shared?

Synchronization: Coordinating tasks? Atomicity?

Variations in models

Reflect diversity of machine architectures

Imply variations in cost

20

Running example: Summation

Compute the sum,

Questions: Where is “A”? Which processors do what? How to combine?

s =
n∑

i=1

f(ai)

A[1..n]

f(A[1..n])

s

f(·)

⊕

21

Programming model 1:
Shared memory

Program = collection of threads of control

Each thread has private variables

May access shared variables, for communicating implicitly and synchronizing

PnP1P0

s s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

22

Need to avoid race conditions:
Use locks

Race condition (data race): Two threads access a variable, with at least
one writing and concurrent accesses

Thread 1

 for i = 0, n/2-1
 s = s + f(A[i])

Thread 2

 for i = n/2, n-1
 s = s + f(A[i])

shared int s = 0;

23

Need to avoid race conditions:
Use locks

Explicitly lock to guarantee atomic operations

Thread 1

 local_s1= 0
 for i = 0, n/2-1
 local_s1 = local_s1 + f(A[i])

 s = s + local_s1

Thread 2

 local_s2 = 0
 for i = n/2, n-1
 local_s2= local_s2 + f(A[i])

 s = s +local_s2

shared int s = 0;
shared lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

24

Machine model 1a:
Symmetric multiprocessors (SMPs)

All processors connect to large shared memory

Challenging to scale both hardware & software > 32 procs

P1

bus

$

memory

P2

$

Pn

$

shared $

25

Source: Pat Worley (ORNL)

26

Machine model 1b: Simultaneous
multithreaded processor (SMT)

Multiple thread contexts share memory and functional units

Switch among threads during long-latency memory ops

Memory

shared $, shared floating point units, etc.

T0 T1 Tn

27

Cray El Dorado processor
Source: John Feo (Cray)

28

Machine model 1c:
Distributed shared memory

Memory logically shared, but physically distributed

Challenge to scale cache coherency protocols > 512 procs

P1

network

$

memory

P2

$

Pn

$

memory memory

Cache lines (pages) must
be large to amortize
overhead  locality is
critical to performance

29

Programming model 2:
Message passing

Program = named processes

No shared address space

Processes communicate via explicit send/receive operations

PnP1P0

y = ..s ...

s: 12

i: 2

s: 14

i: 3

s: 11

i: 1

send P1,s

Network

receive Pn,s

30

Example: Computing A[1]+A[2]

What could go wrong in the following code?

Scenario A: Send/receive is like the telephone system

Scenario B: Send/receive is like the post office

Processor 1:
 x = A[1]
 SEND x → Proc. 2
 RECEIVE y ← Proc. 2
 s = x + y

Processor 2:
 x = A[2]
 SEND x → Proc. 1
 RECEIVE y ← Proc. 1
 s = x + y

31

Machine model 2a:
Distributed memory

Separate processing nodes, memory

Communicate through network interface over interconnect

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

32

Programming model 2b:
Global address space (GAS)

Program = named threads

Shared data, but partitioned over local processes

Implied cost model: remote accesses cost more

PnP1P0
s[myThread] = ...

y = ..s[i] ...
i: 2 i: 5 Private

memory

Shared memory

i: 8

s[0]: 27 s[1]: 27 s[n]: 27

33

Machine model 2b:
Global address space

Same as distributed, but NI can access memory w/o interrupting CPU

One-sided communication; remote direct memory access (RDMA)

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

34

Programming model 3:
Data parallel

Program = single thread performing parallel operations on data

Implicit communication and coordination; easy to understand

Drawback: Not always applicable

Examples: HPF, MATLAB/StarP

A[1..n]

f(A[1..n])

s

f(·)

⊕

35

Machine model 3a: Single
instruction, multiple data (SIMD)

Control processor issues instruction, (usually) simpler processors execute

May “turn off” some processors

Examples: CM2, Maspar

interconnect

P1

memory

NI . . .

control processor

P1

memory

NI P1

memory

NI P1

memory

NI P1

memory

NI

36

Machine model 3b:
Vector processors

Single processor with multiple functional units

Perform same operation

Instruction specifies large amount of parallelism, hardware executes on a subset

Rely on compiler to find parallelism

Resurgent interest

Large scale: Earth Simulator, Cray X1

Small scale: SIMD units (e.g., SSE, Altivec, VIS)

37

Vector hardware

Operations on vector registers, O(10-100) elements / register

Actual hardware has 2-4 vector pipes or lanes

r1 r2

r3

+ +

 … vr2 … vr1

 … vr3

(logically, performs # elts
adds in parallel)

38

Programming model 4:
Hybrid

May mix any combination of preceeding models

MPI + threads

DARPA HPCS languages mix threads and data parallel in global address space

39

Machine model 4:
Clusters of SMPs (CLUMPs)

Use SMPs as building block nodes

Many clusters (e.g., GT “warp” cluster)

Best programming model?

“Flat” MPI

Shared mem in SMP, MPI between nodes

40

Administrivia

41

Administrative stuff

No office hours today (maybe “virtual” only—AIM:VuducOfficeHours)

Accounts: Apparently, you already have them or will soon (!)

Try logging into ‘warp1’ with your UNIX account password

If it doesn’t work, go see TSO Help Desk (and good luck!)

CCB 148 / M-F 7a-5p / 404.894.7065 / AIM:tsohlpdsk

IHPCL mailing list:

https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

42

https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab
https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

Shared memory programming:
POSIX Threads and OpenMP

43

Programming model 1:
Shared memory

Program = collection of threads of control

Each thread has private variables

May access shared variables, for communicating implicitly and synchronizing

PnP1P0

s s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

44

Shared memory programming

Libraries for existing languages

POSIX Threads (PThreads), Solaris Threads: Portable, low-level library

OpenMP: Pragma-based, targets scientific computing apps

Intel Thread Building Blocks (TBB): pThreads + OpenMP

Language extensions

45

Common notions of thread creation

cobegin
 task1 (a1);
 task2 (a2);
coend

id = fork (task1, a1);
task2 (a2);
join (id);

v = future (task1 (a1));
…
… = … v …

46

POSIX Threads (PThreads)

Portable system call interface for creating and synchronizing threads

Threads share all global variables

Fork/join style

Reference: https://computing.llnl.gov/tutorials/pthreads/

errcode = pthread_create (&thread_id,
 &thread_attribute,
 &thread_fun,
 &fun_arg)

…
errcode = pthread_join (thread_id, NULL);

47

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/

Loop-level parallelism

May fork threads at any time, e.g., within a loop

Must have sufficient granularity to mask thread-creation overhead

… A[n];

for (i = 0; i < n; ++i)
 pthread_create (…, &task, &i);
…

48

Low-level policy control

Detached state: Avoid pthread_join calls

Scheduling parameters: priority, policy (FIFO vs. round-robin)

Contention scope: With what thread does this thread compete for CPU

49

Barriers for global synchronization
(Optional extension)

Usage outline

pthread_barrier_t b;

pthread_barrier_init (&b, NULL, 3); // 3 threads

…

pthread_barrier_wait (&b); // All threads wait

…

pthread_barrier_destroy (&b);

50

Mutual exclusion locks (mutexes)

Basic usage

Beware of deadlock

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_init (&lock, NULL);
…
pthread_mutex_lock (&lock);
 // … do critical work …
pthread_mutex_unlock (&lock);

Thread 1 Thread 2
lock (a); lock (b);
lock (b); lock (a);

51

OpenMP: An API for multithreaded
shared-memory programming

Programmer identifies serial and parallel regions, not threads

Library + directives (requires compiler support)

Official website: http://www.openmp.org

Also: https://computing.llnl.gov/tutorials/openMP/

52

http://www.openmp.org
http://www.openmp.org
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

Simple example

int main()
{

 printf (“hello, world!\n”); // Execute in parallel

 return 0;
}

53

Simple example

int main()
{
 omp_set_num_threads (16);

 #pragma omp parallel
 {
 printf (“hello, world!\n”); // Execute in parallel
 } // Implicit barrier/join
 return 0;
}

54

Concurrent loops

May parallelize a loop, but you must check dependencies

s = 0;
for (i = 0; i < n; ++i)
 s += x[i];

#pragma omp parallel for \
 reduction(+: s)
for (i = 0; i < n; ++i)
 s += x[i];

#pragma omp parallel for \
 shared (s)
for (i = 0; i < n; ++i)
 #pragma omp critical
 s += x[i];

55

Loop scheduling

Use “schedule” clause to partition loop iterations

Static: k iterations per thread, assigned statically

Dynamic: k iterations per thread, using logical work queue

Guided: k iterations per thread initially, reduced with each allocation

Run-time: Use value of environment variable, OMP_SCHEDULE

#pragma omp parallel for schedule static(k) …

#pragma omp parallel for schedule dynamic(k) …

#pragma omp parallel for schedule guided(k) …

56

Synchronization primitives

Critical sections

Barriers

Explicit locks

Single-thread
regions

No explicit locks
#pragma omp critical
{ … }

#pragma omp barrier

May require flushing
omp_set_lock (l);
…
omp_unset_lock (l);

Inside parallel regions
#pragma omp single
{ /* executed once */ }

57

“In conclusion…”

58

Backup slides

59

Network topology

Of great interest historically, particularly in mapping algorithms to networks

Key metric: Minimize hops

Modern networks hide hop cost, so topology less important

Large gap in hardware/software latency: On IBM SP, cf. 1.5 usec to 36 usec

Topology affects bisection bandwidth, so still relevant

60

Bisection bandwidth

Bandwidth across smallest cut that divides network in two equal halves

Important for all-to-all communication patterns

Bisection
cut

Not a
bisection
cut

bisection bw = link bw bisection bw = sqrt(n) * link bw

61

Linear and ring networks

Linear
 Diameter ~ n/3
 Bisection = 1

Ring/Torus
 Diameter ~ n/4
 Bisection = 2

62

Multidimensional meshes and tori
2-D mesh
 Diameter ~ 2*sqrt(n)
 Bisection = sqrt(n)

2-D torus
 Diameter ~ sqrt(n)
 Bisection = 2*sqrt(n)

63

Hypercubes

No. of nodes = 2d for dimension d

Diameter = d

Bisection = n/2

d=0 1
2

3
4

64

Trees

Diameter = log n

Bisection bandwidth = 1

Fat trees: Avoid bisection problem using fatter links at top

65

Butterfly networks

Diameter = log n

Bisection = n

Cost: Wiring

66

Topologies in real machines

Machine Network

Cray XT3, XT4

BG/L

SGI Altix

Cray X1

Millennium (UCB, Myricom)

HP Alphaserver (Quadrics)

IBM SP

SGI Origin

Intel Paragon

BBN Butterfly

3D torus

3D torus

Fat tree

4D hypercube*

Arbitrary*

Fat tree

~ Fat tree

Hypercube

2D mesh

Butterfly

Newer

Older

67

Evolution of distributed memory
machine networks

Message queues replaced by direct memory access (DMA)

Wormhole routing: Processor packs/copies, initiates transfer, then goes on

Message passing libraries provide store-and-forward abstraction

May send/receive between any pair of nodes

Time proportional to distance since each processor along path participates

68

