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Algorithm Serial PRAM Memory # procs

Dense LU

Band LU

Jacobi

Explicit inverse

Conj. grad.

RB SOR

Sparse LU

FFT

Multigrid

Lower bound

N3 N N2 N2

N2 (N7/3) N N3/2 (N5/3) N (N4/3)

N2 (N5/3) N (N2/3) N N

N2 log N N2 N2

N3/2 (N4/3) N1/2(1/3) log N N N

N3/2 (N4/3) N1/2 (N1/3) N N

N3/2 (N2) N1/2 N log N (N4/3) N

N log N log N N N

N log2 N N N

N log N N

Algorithms for 2-D (3-D) Poisson, N=n2 (=n3)

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)
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Sources for today’s material

Mike Heath at UIUC

CS 267 (Yelick & Demmel, UCB)
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Efficiency and scalability metrics 
(wrap-up)
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Example: Summation using a tree 
algorithm

Efficiency

Ep ≡
C1

Cp
≈ n

n + p log p
=

1
1 + p

n log p
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Basic definitions

M

W

V

T

C

Memory complexity Storage for given problem (e.g., words)

Computational complexity
Amount of work for given problem 
(e.g., flops)

Processor speed Ops / time (e.g., flop/s)

Execution time
Elapsed wallclock
(e.g., secs)

Computational cost
(No. procs) * (exec. time)
[e.g., processor-hours] 
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Parallel scalability

Algorithm is scalable if

Why use more processors?

Solve fixed problem in less time

Solve larger problem in same time (or any time)

Obtain sufficient aggregate memory

Tolerate latency and/or use all available bandwidth (Little’s Law)

Ep ≡
C1

Cp
= Θ(1) as p→∞
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Is this algorithm scalable?

No, for fixed problem size, exec. time, and work / proc.

Determine isoefficiency function for which efficiency is constant

But then execution time grows with p:

Ep ≡
C1

Cp
≈ n

n + p log p
=

1
1 + p

n log p
= E (const.)

=⇒
n(p) = Θ(p log p)

Tp =
n

p
+ log p = Θ(log p)
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A simple model of communication 
performance
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Latency and bandwidth model

Model time to send a message in terms of latency and bandwidth

Usually have cost(flop) << 1/β << α

One long message cheaper than many short ones

Can do hundreds or thousands of flops for each message

Efficiency demands large computation-to-communication ratio

t(n) = α +
n

β
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Empirical latency and (inverse) 
bandwidth (μsec) on real machines
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Time to Send a Message (Model)
Time (μsec)

Size (bytes)
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Latency on some current machines
(MPI round-trip)
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Source: Yelick (UCB/LBNL)
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Latency over Time
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Bandwidth vs. Message Size

Source: Mike Welcome (NERSC)
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Parallel programming models
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A generic parallel architecture

Physical location of memories, processors? Connectivity?

Proc

Interconnection 
Network

Memory

ProcProcProc
Proc Proc

MemoryMemory Memory Memory

19



What is a “parallel programming 
model?”

Languages + libraries composing abstract view of machine

Major constructs

Control: Create parallelism? Execution model?

Data: Private vs. shared?

Synchronization: Coordinating tasks? Atomicity?

Variations in models

Reflect diversity of machine architectures

Imply variations in cost
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Running example: Summation

Compute the sum,

Questions: Where is “A”? Which processors do what? How to combine?

s =
n∑

i=1

f(ai)

A[1..n]

f(A[1..n])

s

f(·)

⊕
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Programming model 1:
Shared memory

Program = collection of threads of control

Each thread has private variables

May access shared variables, for communicating implicitly and synchronizing

PnP1P0

s      s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private 
memory

i: 8
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Need to avoid race conditions:
Use locks

Race condition (data race): Two threads access a variable, with at least 
one writing and concurrent accesses

Thread 1

   for i = 0, n/2-1
        s = s + f(A[i])

Thread 2

  for i = n/2, n-1
        s = s + f(A[i])

shared int s = 0;
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Need to avoid race conditions:
Use locks

Explicitly lock to guarantee atomic operations

Thread 1

    local_s1= 0
    for i = 0, n/2-1
        local_s1 = local_s1 + f(A[i])
    
    s = s + local_s1
    

Thread 2

    local_s2 = 0
    for i = n/2, n-1
        local_s2= local_s2 + f(A[i])
    
    s = s +local_s2
    

shared int s = 0;
shared lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);
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Machine model 1a:
Symmetric multiprocessors (SMPs)

All processors connect to large shared memory

Challenging to scale both hardware & software > 32 procs

P1

bus

$

memory

P2

$

Pn

$

shared $
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Source: Pat Worley (ORNL)
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Machine model 1b: Simultaneous 
multithreaded processor (SMT)

Multiple thread contexts share memory and functional units

Switch among threads during long-latency memory ops

Memory

shared $, shared floating point units, etc.

T0 T1 Tn
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Cray El Dorado processor
Source: John Feo (Cray)
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Machine model 1c:
Distributed shared memory

Memory logically shared, but physically distributed

Challenge to scale cache coherency protocols > 512 procs

P1

network

$

memory

P2

$

Pn

$

memory memory

Cache lines (pages) must 
be large to amortize 
overhead  locality is 
critical to performance
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Programming model 2:
Message passing

Program = named processes

No shared address space

Processes communicate via explicit send/receive operations

PnP1P0

y = ..s ...

s: 12 

i: 2

s: 14 

i: 3

s: 11 

i: 1

send P1,s

Network

receive Pn,s
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Example: Computing A[1]+A[2]

What could go wrong in the following code?

Scenario A: Send/receive is like the telephone system

Scenario B: Send/receive is like the post office

Processor 1:
    x = A[1]
    SEND x → Proc. 2
    RECEIVE y ← Proc. 2
    s = x + y   

Processor 2:
    x = A[2]
    SEND x → Proc. 1
    RECEIVE y ← Proc. 1
    s = x + y
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Machine model 2a:
Distributed memory

Separate processing nodes, memory

Communicate through network interface over interconnect

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI
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Programming model 2b:
Global address space (GAS)

Program = named threads

Shared data, but partitioned over local processes

Implied cost model: remote accesses cost more

PnP1P0
s[myThread] = ...

y = ..s[i] ...
i: 2 i: 5 Private 

memory

Shared memory

i: 8

s[0]: 27 s[1]: 27 s[n]: 27
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Machine model 2b:
Global address space

Same as distributed, but NI can access memory w/o interrupting CPU

One-sided communication; remote direct memory access (RDMA)

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI
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Programming model 3:
Data parallel

Program = single thread performing parallel operations on data

Implicit communication and coordination; easy to understand

Drawback: Not always applicable

Examples: HPF, MATLAB/StarP

A[1..n]

f(A[1..n])

s

f(·)

⊕
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Machine model 3a: Single 
instruction, multiple data (SIMD)

Control processor issues instruction, (usually) simpler processors execute

May “turn off” some processors

Examples: CM2, Maspar

interconnect

P1

memory

NI . . .

control processor

P1

memory

NI P1

memory

NI P1

memory

NI P1

memory

NI
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Machine model 3b:
Vector processors

Single processor with multiple functional units

Perform same operation

Instruction specifies large amount of parallelism, hardware executes on a subset

Rely on compiler to find parallelism

Resurgent interest

Large scale: Earth Simulator, Cray X1

Small scale: SIMD units (e.g., SSE, Altivec, VIS)
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Vector hardware

Operations on vector registers, O(10-100) elements / register

Actual hardware has 2-4 vector pipes or lanes

r1 r2

r3

+ +

                   …      vr2                   …      vr1

                   …      vr3

(logically, performs # elts 
adds in parallel)
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Programming model 4:
Hybrid 

May mix any combination of preceeding models

MPI + threads

DARPA HPCS languages mix threads and data parallel in global address space
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Machine model 4:
Clusters of SMPs (CLUMPs)

Use SMPs as building block nodes

Many clusters (e.g., GT “warp” cluster)

Best programming model?

“Flat” MPI

Shared mem in SMP, MPI between nodes
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Administrivia
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Administrative stuff

No office hours today (maybe “virtual” only—AIM:VuducOfficeHours)

Accounts: Apparently, you already have them or will soon (!)

Try logging into ‘warp1’ with your UNIX account password

If it doesn’t work, go see TSO Help Desk (and good luck!)

CCB 148 / M-F 7a-5p / 404.894.7065 / AIM:tsohlpdsk

IHPCL mailing list:

https://mailman.cc.gatech.edu/mailman/listinfo/ihpc-lab

42
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Shared memory programming:
POSIX Threads and OpenMP
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Programming model 1:
Shared memory

Program = collection of threads of control

Each thread has private variables

May access shared variables, for communicating implicitly and synchronizing

PnP1P0

s      s = ...
y = ..s ...

Shared memory

i: 2 i: 5 Private 
memory

i: 8
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Shared memory programming

Libraries for existing languages

POSIX Threads (PThreads), Solaris Threads: Portable, low-level library

OpenMP: Pragma-based, targets scientific computing apps

Intel Thread Building Blocks (TBB): pThreads + OpenMP

Language extensions
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Common notions of thread creation

cobegin
   task1 (a1);
   task2 (a2);
coend

id = fork (task1, a1);
task2 (a2);
join (id);

v = future (task1 (a1));
…
… = … v …
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POSIX Threads (PThreads)

Portable system call interface for creating and synchronizing threads

Threads share all global variables

Fork/join style

Reference: https://computing.llnl.gov/tutorials/pthreads/

errcode = pthread_create (&thread_id,
                          &thread_attribute,
                          &thread_fun,
                          &fun_arg)

…
errcode = pthread_join (thread_id, NULL);
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Loop-level parallelism

May fork threads at any time, e.g., within a loop

Must have sufficient granularity to mask thread-creation overhead

… A[n];

for (i = 0; i < n; ++i)
   pthread_create (…, &task, &i);
…
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Low-level policy control

Detached state: Avoid pthread_join calls

Scheduling parameters: priority, policy (FIFO vs. round-robin)

Contention scope: With what thread does this thread compete for CPU
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Barriers for global synchronization
(Optional extension)

Usage outline

pthread_barrier_t b;

pthread_barrier_init (&b, NULL, 3);  // 3 threads

…

pthread_barrier_wait (&b);   // All threads wait

…

pthread_barrier_destroy (&b);

50



Mutual exclusion locks (mutexes)

Basic usage

Beware of deadlock

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_init (&lock, NULL);
…
pthread_mutex_lock (&lock);
   // … do critical work …
pthread_mutex_unlock (&lock);

Thread 1 Thread 2
lock (a); lock (b);
lock (b); lock (a);
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OpenMP: An API for multithreaded 
shared-memory programming

Programmer identifies serial and parallel regions, not threads

Library + directives (requires compiler support)

Official website: http://www.openmp.org

Also: https://computing.llnl.gov/tutorials/openMP/
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Simple example

int main()
{

   printf (“hello, world!\n”); // Execute in parallel

   return 0;
}
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Simple example

int main()
{
   omp_set_num_threads (16);

   #pragma omp parallel
   {
     printf (“hello, world!\n”); // Execute in parallel
   } // Implicit barrier/join
   return 0;
}
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Concurrent loops

May parallelize a loop, but you must check dependencies

s = 0;
for (i = 0; i < n; ++i)
  s += x[i];

#pragma omp parallel for \
        reduction(+: s)
for (i = 0; i < n; ++i)
  s += x[i];

#pragma omp parallel for \
        shared (s)
for (i = 0; i < n; ++i)
  #pragma omp critical
  s += x[i];
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Loop scheduling

Use “schedule” clause to partition loop iterations

Static: k iterations per thread, assigned statically

Dynamic: k iterations per thread, using logical work queue

Guided: k iterations per thread initially, reduced with each allocation

Run-time: Use value of environment variable, OMP_SCHEDULE

#pragma omp parallel for schedule static(k) …

#pragma omp parallel for schedule dynamic(k) …

#pragma omp parallel for schedule guided(k) …
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Synchronization primitives

Critical sections

Barriers

Explicit locks

Single-thread 
regions

No explicit locks
#pragma omp critical
{ … }

#pragma omp barrier

May require flushing
omp_set_lock (l);
…
omp_unset_lock (l);

Inside parallel regions
#pragma omp single
{ /* executed once */ }
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“In conclusion…”
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Backup slides
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Network topology

Of great interest historically, particularly in mapping algorithms to networks

Key metric: Minimize hops

Modern networks hide hop cost, so topology less important

Large gap in hardware/software latency: On IBM SP, cf. 1.5 usec to 36 usec

Topology affects bisection bandwidth, so still relevant
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Bisection bandwidth

Bandwidth across smallest cut that divides network in two equal halves

Important for all-to-all communication patterns

Bisection 
cut

Not a 
bisection
cut 

bisection bw = link bw bisection bw = sqrt(n) * link bw
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Linear and ring networks

Linear
  Diameter ~ n/3
  Bisection = 1

Ring/Torus
  Diameter ~ n/4
  Bisection = 2
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Multidimensional meshes and tori
2-D mesh
  Diameter ~ 2*sqrt(n)
  Bisection = sqrt(n)

2-D torus
  Diameter ~ sqrt(n)
  Bisection = 2*sqrt(n)
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Hypercubes

No. of nodes = 2d for dimension d

Diameter = d

Bisection = n/2

d=0 1
2

3
4
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Trees

Diameter = log n

Bisection bandwidth = 1

Fat trees: Avoid bisection problem using fatter links at top
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Butterfly networks

Diameter = log n

Bisection = n

Cost: Wiring
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Topologies in real machines

Machine Network

Cray XT3, XT4

BG/L

SGI Altix

Cray X1

Millennium (UCB, Myricom)

HP Alphaserver (Quadrics)

IBM SP

SGI Origin

Intel Paragon

BBN Butterfly

3D torus

3D torus

Fat tree

4D hypercube*

Arbitrary*

Fat tree

~ Fat tree

Hypercube

2D mesh

Butterfly

Newer

Older
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Evolution of distributed memory 
machine networks

Message queues replaced by direct memory access (DMA)

Wormhole routing: Processor packs/copies, initiates transfer, then goes on

Message passing libraries provide store-and-forward abstraction

May send/receive between any pair of nodes

Time proportional to distance since each processor along path participates
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