
Review: From problem to parallel
algorithm

Mathematical formulations of “interesting” problems abound

Poisson’s equation

Sources: Electrostatics, gravity, fluid flow, image processing (!)

Numerical solution: Discretize and solve Ax = b

Many methods, which serve as building blocks for other problems and algorithms

Jacobi’s method: Easy to parallelize iterative method with slow convergence

1

Algorithm Serial PRAM Memory # procs

Dense LU

Band LU

Jacobi

Explicit inverse

Conj. grad.

RB SOR

Sparse LU

FFT

Multigrid

Lower bound

N3 N N2 N2

N2 (N7/3) N N3/2 (N5/3) N (N4/3)

N2 (N5/3) N (N2/3) N N

N2 log N N2 N2

N3/2 (N4/3) N1/2(1/3) log N N N

N3/2 (N4/3) N1/2 (N1/3) N N

N3/2 (N2) N1/2 N log N (N4/3) N

N log N log N N N

N log2 N N N

N log N N

Recall: Algorithms for 2-D (3-D) Poisson, N=n2 (=n3)

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

2

Recall: 2-D Poisson Equation

Graph and stencil

T =

4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4

1 2 3

4 5 6

7 8 9

2 4 5 6 8

3

Recall: Jacobi’s method is easy to
parallelize

Parallelism: Update all points
independently

Partition domain into blocks

n2/p elements / block

Communicate at boundaries

n/p per neighbor

Small if n >> p

Block partition domain

4

I: More Poisson
II: Performance metrics and models

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA, Spring 2008

[L.04] Thursday, January 17, 2008

5

Sources for today’s material

CS 267 (Yelick & Demmel, UCB)

“Sourcebook”, eds. Dongarra, et al.

Mike Heath at UIUC

“Intro to the CG method w/o the agonizing pain,” by Jonathan Shewchuk
(UCB)

6

Algorithm Serial PRAM Memory # procs

Dense LU

Band LU

Jacobi

Explicit inverse

Conj. grad.

RB SOR

Sparse LU

FFT

Multigrid

Lower bound

N3 N N2 N2

N2 (N7/3) N N3/2 (N5/3) N (N4/3)

N2 (N5/3) N (N2/3) N N

N2 log N N2 N2

N3/2 (N4/3) N1/2(1/3) log N N N

N3/2 (N4/3) N1/2 (N1/3) N N

N3/2 (N2) N1/2 N log N (N4/3) N

N log N log N N N

N log2 N N N

N log N N

Algorithms for 2-D (3-D) Poisson, N=n2 (=n3)

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

7

Can we speed up the rate at which
information propagates?

RHS True solution

5 steps of
another

technique

5 steps of Jacobi

8

Can “speed up” info propagation?

Jacobi:

If processing in lexicographic order, can use “most recent” values

ut+1
i,j =

1
4

(
ut+1

i−1,j + ut
i+1,j + ut+1

i,j−1 + ut
i,j+1 + h2fi,j

)

ut+1
i,j =

1
4

(
ut

i−1,j + ut
i+1,j + ut

i,j−1 + ut
i,j+1 + h2fi,j

)

“Gauss-Seidel” algorithm

9

Red-black Gauss-Seidel

Alternately update R & B subsets

General graphs?

Not much improvement

Convergence: (only) 2x faster

PRAM: 2x parallel steps

10

Successive overrelaxation (SOR)

Rewrite Jacobi as “original + correction:”

If “correction” is a good direction, accelerate by relaxation factor ω > 1:

Red-black SOR: Alternately apply the following to red, black subsets

ut+1
i,j = ut

i,j + ∆i,j

ut+1
i,j = ut

i,j + ω·∆i,j

ut+1
i,j = (1− ω)ut

i,j +
ω

4
(
ut

i−1,j + ut
i+1,j + ut

i,j−1 + ut
i,j+1 + h2fi,j

)

11

Red-black SOR

Red-black SOR: Alternately apply the following to red, black subsets

ut+1
i,j = (1− ω)ut

i,j +
ω

4
(
ut

i−1,j + ut
i+1,j + ut

i,j−1 + ut
i,j+1 + h2fi,j

)

Can show, for Poisson, that error minimized when: [Demmel (1997)]

Can also show no. of steps to converge is O(n) vs. Jacobi’s O(n2)

Serial complexity = O(n3=N3/2) vs. Jacobi’s O(n4=N2). [PRAM?]

1 < ω = 2
1+sin π

N+1
< 2

12

Algorithm Serial PRAM Memory # procs

Dense LU

Band LU

Jacobi

Explicit inverse

Conj. grad.

RB SOR

Sparse LU

FFT

Multigrid

Lower bound

N3 N N2 N2

N2 (N7/3) N N3/2 (N5/3) N (N4/3)

N2 (N5/3) N (N2/3) N N

N2 log N N2 N2

N3/2 (N4/3) N1/2(1/3) log N N N

N3/2 (N4/3) N1/2 (N1/3) N N

N3/2 (N2) N1/2 N log N (N4/3) N

N log N log N N N

N log2 N N N

N log N N

Algorithms for 2-D (3-D) Poisson, N=n2 (=n3)

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

13

Ax=b solves a minimization problem

If A is symmetric positive definite, then the quadratic form,

is minimized when

Ax = b

φ(x) =
1
2
xT Ax− xT b

Intuition? Consider

A =
(

3 2
2 6

)
b =

(
2
−8

)

14

φ(x) =
1
2
xT Ax− xT b

15

Constant ϕ

φ(x) =
1
2
xT Ax− xT b

16

Positive-definite Negative-definite

Singular, positive-indefinite Indefinite

17

Why the quadratic form?

Consider error between approx. and true solution at step k of some method:

φ(x) =
1
2
xT Ax− xT b

e = xapprox − x∗

||e||2A = eT Ae

18

Some additional observations about
this minimization problem

In general, an iterative numerical optimization method has the form

xk+1 = xk + α · sk

Choose α to minimize ϕ(xk + αsk)

Negative gradient is the residual vector

−∇φ(x) = b−Ax ! r
Can show analytically that

α =
rT
k sk

sT
k Ask

19

Conjugate gradient algorithm for
solving linear systems

(Sparse) matrix-vector multiply

20

Refer to “Templates” book for broad
survey of iterative linear solvers

http://www.netlib.org/templates

Symmetric?

Definite?AT available?

Eigenvalues
Known?

Try CG Try CG or
Chebyshev

Try Minres
or CG

Try QMR
Storage

Expensive?

Try CGS or
Bi-CGSTAB

Try GMRES

N Y

N

N

N

N

Y

Y

Y

Y

21

http://www.netlib.org/templates
http://www.netlib.org/templates

Algorithm Serial PRAM Memory # procs

Dense LU

Band LU

Jacobi

Explicit inverse

Conj. grad.

RB SOR

Sparse LU

FFT

Multigrid

Lower bound

N3 N N2 N2

N2 (N7/3) N N3/2 (N5/3) N (N4/3)

N2 (N5/3) N (N2/3) N N

N2 log N N2 N2

N3/2 (N4/3) N1/2(1/3) log N N N

N3/2 (N4/3) N1/2 (N1/3) N N

N3/2 (N2) N1/2 N log N (N4/3) N

N log N log N N N

N log2 N N N

N log N N

Algorithms for 2-D (3-D) Poisson, N=n2 (=n3)

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

22

Administrivia

23

Administrative stuff

Accounts: Apparently, you already have them or will soon (!)

Try logging into ‘warp1’ with your UNIX account password

If it doesn’t work, go see TSO Help Desk (and good luck!)

CCB 148 / M-F 7a-5p / 404.894.7065 / AIM:tsohlpdsk

Summer internships at national and industrial research labs

24

Metrics and models of efficiency
and scalability

25

Outline

Parallel efficiency: “Effectiveness” of parallel algorithm compared to serial

Scalability - definitions, problem scaling, isoefficiency

Simple models

Slides in this section taken from Heath (UIUC)

26

Parallel efficiency: 4 scenarios

Consider load balance, concurrency, and overhead

27

(a) Perfect load balance and
concurrency

28

(b) Good initial concurrency but
poor load balance

29

(c) Good load balance but poor
concurrency

30

(d) Good load balance and
concurrency, but with overheads

31

Basic definitions

M

W

V

T

C

Memory complexity
Storage for given
problem (e.g., words)

Computational complexity
Amount of work for given
problem (e.g., flops)

Processor speed Ops / time (e.g., flop/s)

Execution time
Elapsed wallclock
(e.g., secs)

Computational cost
(No. procs) * (exec. time)
[e.g., processor-hours]

32

Basic definitions

M

W

V

T

C

Memory complexity
Storage for given
problem (e.g., words)

Computational complexity
Amount of work for given
problem (e.g., flops)

Processor speed Ops / time (e.g., flop/s)

Execution time
Elapsed wallclock
(e.g., secs)

Computational cost
(No. procs) * (exec. time)
[e.g., processor-hours]

Subscripts denote processors used, e.g., T1 = serial time, Wp = work for p procs.

33

Basic definitions

M

W

V

T

C

Memory complexity
Storage for given
problem (e.g., words)

Computational complexity
Amount of work for given
problem (e.g., flops)

Processor speed Ops / time (e.g., flop/s)

Execution time
Elapsed wallclock
(e.g., secs)

Computational cost
(No. procs) * (exec. time)
[e.g., processor-hours]

Assumptions: Mp ≥M1,Wp ≥W1

34

Quantities may be functions of one
another

Consider: W(M) to indicate that work depends on memory complexity.

Example: Multiplying two n x n matrices

M = O(n2),W = O(n3) =⇒ W = O(M
3
2)

35

Comments on processor speed, V

Processor speed will depend on M due to memory hierarchies

Homogeneous vs. heterogeneous processors

Aggregate speed

Vp(M) ?= V1(M)

p · V

(
M

p

)

V (M) ?= V (N) ; V

(
M

p

)
?
≥ V (M)

36

Execution time vs. cost

Serial and parallel execution time: Work / Speed

Cost = (no. procs) * (execution time)

T1 =
W1

V (M)
Tp =

Wp

p · V
(

M
p

)

C1 ≡ T1 Cp ≡ p · Tp =
Wp

V
(

M
p

)

37

Efficiency and speedup

Efficiency

Speedup

Question: When might superlinear speedup occur?

Ep ≡
C1

Cp
=

T1

p · Tp
=

W1

Wp
· V (M/p)

V (M)

Sp ≡
T1

Tp
= p · Ep

38

Example: Summation using a tree
algorithm

Memory usage is the same

M1 = Mp = n

39

Example: Summation using a tree
algorithm

Work: parallel case does more for intermediate sums

W1 ≈ n Wp ≈ n + p log p

40

Example: Summation using a tree
algorithm

Time: Assume perfect load balance & concurrency

T1 ≈ n Tp ≈
n

p
+ log p

41

Example: Summation using a tree
algorithm

Cost: (no. procs) * (time)

C1 ≈ n Cp ≈ n + p log p

42

Example: Summation using a tree
algorithm

Efficiency

Ep ≡
C1

Cp
≈ n

n + p log p
=

1
1 + p

n log p

43

Example: Summation using a tree
algorithm

Speedup

Sp ≡
T1

Tp
≈ n

n
p + log p

=
p

1 + p
n log p

44

Parallel scalability

Algorithm is scalable if

Why use more processors?

Solve fixed problem in less time

Solve larger problem in same time (or any time)

Obtain sufficient aggregate memory

Tolerate latency and/or use all available bandwidth (Little’s Law)

Ep = Θ(1) as p→∞

45

Problem scaling:
Fixed serial work

More processors eventually hits diminishing returns

Summation algorithm is not scalable in fixed work case

Ep ≡
C1

Cp
≈ n

n + p log p
=

1
1 + p

n log p

46

Problem scaling:
Fixed execution time

Applies when a strict time limit applies

Algorithm scales only if work scales linearly with p

Summation algorithm does not scale in this scenario

T1 =
W1

V (M)
Tp =

Wp

p · V
(

M
p

)

T1 ≈ n Tp ≈
n

p
+ log p

47

Problem scaling:
Scaled speedup

Fixed work per processor

Summation algorithm does not scale in this scenario

T1 =
W1

V (M)
Tp =

Wp

p · V
(

M
p

)

Ep ∝
W1

Wp
≈ pn

pn + p log p
=

1
1 + log p

n

−→ 0

48

Problem scaling

Fixed memory per processor

Fixed accuracy

Fixed efficiency (isoefficiency) ⇒ next time

49

“In conclusion…”

50

