Review: From problem to parallel algorithm

H. Mathematical formulations of "interesting" problems abound
.. Poisson's equation
I. Sources: Electrostatics, gravity, fluid flow, image processing (!)
\#. Numerical solution: Discretize and solve $\mathrm{Ax}=\mathrm{b}$
:. Many methods, which serve as building blocks for other problems and algorithms
H. Jacobi's method: Easy to parallelize iterative method with slow convergence

Recall: Algorithms for 2-D (3-D) Poisson, $\mathrm{N}=\mathrm{n}^{\mathbf{2}}\left(=\mathrm{n}^{3}\right)$

Algorithm	Serial	PRAM	Memory	\# procs
Dense LU	N^{3}	N	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Band LU	$\mathrm{N}^{2}\left(\mathrm{~N}^{7 / 3}\right)$	N	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{4 / 3}\right)$
Jacobi	$\mathbf{N}^{2}\left(\mathbf{N}^{5 / 3}\right)$	$\mathbf{N}\left(\mathrm{N}^{2 / 3}\right)$	\mathbf{N}	\mathbf{N}
Explicit inverse	N^{2}	$\log \mathrm{~N}$	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Conj. grad.	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2(1 / 3)} \log \mathrm{N}$	N	N
RB SOR	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2}\left(\mathrm{~N}^{1 / 3}\right)$	N	N
Sparse LU	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{2}\right)$	$\mathrm{N}^{1 / 2}$	$\mathrm{~N} \log \mathrm{~N}\left(\mathrm{~N}^{4 / 3}\right)$	N
FFT	$\mathrm{N} \log \mathrm{N}$	$\log \mathrm{N}$	N	N
Multigrid	N	$\log ^{2} \mathrm{~N}$	N	N
Lower bound	\mathbf{N}	$\log ^{\mathbf{N}}$	\mathbf{N}	

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

Recall: 2-D Poisson Equation

Recall: Jacobi's method is easy to parallelize

F. Parallelism: Update all points independently
A. Partition domain into blocks
:. $\quad n^{2} / p$ elements / block
I. Communicate at boundaries
H. n/p per neighbor
F. Small if $n \gg p$

Block partition domain

I: More Poisson
II: Performance metrics and models

Prof. Richard Vuduc
Georgia Institute of Technology
CSE/CS 8803 PNA, Spring 2008
[L.04] Thursday, January 17, 2008

Sources for today's material

:. CS 267 (Yelick \& Demmel, UCB)
". "Sourcebook", eds. Dongarra, et al.
A. Mike Heath at UIUC
". "Intro to the CG method w/o the agonizing pain," by Jonathan Shewchuk (UCB)

Algorithms for 2-D (3-D) Poisson, $N=n^{2}\left(=n^{3}\right)$

Algorithm	Serial	PRAM	Memory	\# procs
Dense LU	N^{3}	N	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Band LU	$\mathrm{N}^{2}\left(\mathrm{~N}^{7 / 3}\right)$	N	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{4 / 3}\right)$
Jacobi	$\mathrm{N}^{2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{2 / 3}\right)$	N	N
Explicit inverse	N^{2}	$\log \mathrm{~N}$	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Conj. grad.	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2(1 / 3)} \log \mathrm{N}$	N	N
RB SOR	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathbf{N}^{1 / 2}\left(\mathbf{N}^{1 / 3}\right)$	\mathbf{N}	\mathbf{N}
Sparse LU	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{2}\right)$	$\mathrm{N}^{1 / 2}$	$\mathrm{~N} \log \mathrm{~N}\left(\mathrm{~N}^{4 / 3}\right)$	N
FFT	$\mathrm{N} \log \mathrm{N}$	$\log ^{2}$	N	N
Multigrid	N	$\log ^{2} \mathrm{~N}$	N	N
Lower bound	\mathbf{N}	$\log ^{\mathbf{N}}$	\mathbf{N}	

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

Can we speed up the rate at which information propagates?

Can "speed up" info propagation?

\#. Jacobi:

$$
u_{i, j}^{t+1}=\frac{1}{4}\left(u_{i-1, j}^{t}+u_{i+1, j}^{t}+u_{i, j-1}^{t}+u_{i, j+1}^{t}+h^{2} f_{i, j}\right)
$$

". If processing in lexicographic order, can use "most recent" values

$$
u_{i, j}^{t+1}=\frac{1}{4}\left(u_{i-1, j}^{t+1}+u_{i+1, j}^{t}+u_{i, j-1}^{t+1}+u_{i, j+1}^{t}+h^{2} f_{i, j}\right)
$$

". "Gauss-Seidel" algorithm

Red-black Gauss-Seidel

A. Alternately update R \& B subsets
.. General graphs?
H. Not much improvement
F. Convergence: (only) $2 x$ faster
H. PRAM: $2 x$ parallel steps

Successive overrelaxation (SOR)

". Rewrite Jacobi as "original + correction:"

$$
u_{i, j}^{t+1}=u_{i, j}^{t}+\Delta_{i, j}
$$

H. If "correction" is a good direction, accelerate by relaxation factor $\boldsymbol{\omega}>\mathbf{1}$:

$$
u_{i, j}^{t+1}=u_{i, j}^{t}+\omega \cdot \Delta_{i, j}
$$

I. Red-black SOR: Alternately apply the following to red, black subsets

$$
u_{i, j}^{t+1}=(1-\omega) u_{i, j}^{t}+\frac{\omega}{4}\left(u_{i-1, j}^{t}+u_{i+1, j}^{t}+u_{i, j-1}^{t}+u_{i, j+1}^{t}+h^{2} f_{i, j}\right)
$$

Red-black SOR

I. Red-black SOR: Alternately apply the following to red, black subsets

$$
u_{i, j}^{t+1}=(1-\omega) u_{i, j}^{t}+\frac{\omega}{4}\left(u_{i-1, j}^{t}+u_{i+1, j}^{t}+u_{i, j-1}^{t}+u_{i, j+1}^{t}+h^{2} f_{i, j}\right)
$$

.. Can show, for Poisson, that error minimized when: [Demmel (1997)]

$$
1<\omega=\frac{2}{1+\sin \frac{\pi}{N+1}}<2
$$

H. Can also show no. of steps to converge is $O(n)$ vs. Jacobi's $O\left(n^{2}\right)$
H. Serial complexity $=O\left(n^{3}=N^{3 / 2}\right)$ vs. Jacobi's $O\left(n^{4}=N^{2}\right)$. [PRAM?]

Algorithms for 2-D (3-D) Poisson, $N=n^{2}\left(=n^{3}\right)$

Algorithm	Serial	PRAM	Memory	\# procs
Dense LU	N^{3}	N	N^{2}	N^{2}
Band LU	$\mathrm{N}^{2}\left(\mathrm{~N}^{7 / 3}\right)$	N	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{4 / 3}\right)$
Jacobi	$\mathrm{N}^{2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{2 / 3}\right)$	N	N
Explicit inverse	N^{2}	$\log \mathrm{N}$	N^{2}	N^{2}
Conj. grad.	$\mathbf{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathbf{N}^{1 / 2(1 / 3)} \log \mathbf{N}$	N	N
RB SOR	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2}\left(\mathrm{~N}^{1 / 3}\right)$	N	N
Sparse LU	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{2}\right)$	$\mathrm{N}^{1 / 2}$	$N \log N\left(N^{4 / 3}\right)$	N
FFT	$N \log N$	$\log N$	N	N
Multigrid	N	$\log ^{2} \mathrm{~N}$	N	N
Lower bound	N	$\boldsymbol{\operatorname { l o g }} \mathbf{N}$	N	

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

$A x=b$ solves a minimization problem

4. If A is symmetric positive definite, then the quadratic form,

$$
\phi(x)=\frac{1}{2} x^{T} A x-x^{T} b
$$

H. is minimized when

$$
A x=b
$$

A. Intuition? Consider

$$
A=\left(\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right) \quad b=\binom{2}{-8}
$$

Positive-definite

Singular, positive-indefinite

Negative-definite

Why the quadratic form?

$$
\phi(x)=\frac{1}{2} x^{T} A x-x^{T} b
$$

4. Consider error between approx. and true solution at step k of some method:

$$
\begin{aligned}
e & =x_{\text {approx }}-x_{*} \\
\|e\|_{A}^{2} & =e^{T} A e
\end{aligned}
$$

Some additional observations about this minimization problem

:. In general, an iterative numerical optimization method has the form

$$
x_{k+1}=x_{k}+\alpha \cdot s_{k}
$$

H. Choose α to minimize $\phi\left(x_{k}+\alpha s_{k}\right)$
4. Negative gradient is the residual vector

$$
-\nabla \phi(x)=b-A x \triangleq r
$$

H. Can show analytically that

$$
\alpha=\frac{r_{k}^{T} s_{k}}{s_{k}^{T} A s_{k}}
$$

Conjugate gradient algorithm for solving linear systems

$$
\begin{aligned}
& \boldsymbol{x}_{0}=\text { initial guess } \\
& \boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0} \\
& \boldsymbol{s}_{0}=\boldsymbol{r}_{0} \\
& \text { for } k=0,1,2, \ldots \\
& \quad \alpha_{k}=\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k} / \boldsymbol{s}_{k}^{T} \boldsymbol{A} \boldsymbol{s}_{k} \\
& \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{s}_{k} \\
& \boldsymbol{r}_{k+1}=\boldsymbol{r}_{k}-\alpha_{k} \boldsymbol{A} \boldsymbol{s}_{k} \\
& \beta_{k+1}=\boldsymbol{r}_{k+1}^{T} \boldsymbol{r}_{k+1} / \boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k} \\
& \boldsymbol{s}_{k+1}=\boldsymbol{r}_{k+1}+\boldsymbol{\beta}_{k+1} \boldsymbol{s}_{k}
\end{aligned}
$$

(Sparse) matrix-vector multiply
end

Refer to "Templates" book for broad survey of iterative linear solvers

: h. http://www.netlib.org/templates

Algorithms for 2-D (3-D) Poisson, $N=n^{2}\left(=n^{3}\right)$

Algorithm	Serial	PRAM	Memory	\# procs
Dense LU	N^{3}	N	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Band LU	$\mathrm{N}^{2}\left(\mathrm{~N}^{7 / 3}\right)$	N	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{4 / 3}\right)$
Jacobi	$\mathbf{N}^{2}\left(\mathbf{N}^{5 / 3}\right)$	$\mathbf{N}\left(\mathbf{N}^{2 / 3}\right)$	\mathbf{N}	\mathbf{N}
Explicit inverse	N^{2}	$\log \mathrm{~N}$	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Conj. grad.	$\mathbf{N}^{3 / 2}\left(\mathbf{N}^{4 / 3}\right)$	$\mathbf{N}^{1 / 2(1 / 3)} \log \mathbf{N}$	\mathbf{N}	\mathbf{N}
RB SOR	$\mathbf{N}^{3 / 2}\left(\mathbf{N}^{4 / 3}\right)$	$\mathbf{N}^{1 / 2}\left(\mathbf{N}^{1 / 3}\right)$	\mathbf{N}	\mathbf{N}
Sparse LU	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{2}\right)$	$\mathrm{N}^{1 / 2}$	$\mathrm{~N} \log \mathrm{~N}\left(\mathrm{~N}^{4 / 3}\right)$	N
FFT	$\mathrm{N} \log \mathrm{N}$	$\log ^{2}$	N	N
Multigrid	N	$\log ^{2} \mathrm{~N}$	N	N
Lower bound	\mathbf{N}	$\log ^{\mathbf{N}}$	\mathbf{N}	

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

Administrivia

Administrative stuff

E. Accounts: Apparently, you already have them or will soon (!)
:. Try logging into 'warp1' with your UNIX account password
". If it doesn't work, go see TSO Help Desk (and good luck!)
H. CCB 148 / M-F 7a-5p / 404.894.7065 / AIM:tsohlpdsk
H. Summer internships at national and industrial research labs

Metrics and models of efficiency and scalability

Outline

H. Parallel efficiency: "Effectiveness" of parallel algorithm compared to serial
H. Scalability - definitions, problem scaling, isoefficiency
.. Simple models
H. Slides in this section taken from Heath (UIUC)

Parallel efficiency: 4 scenarios

(a)

(b)

(c)

(d)

Consider load balance, concurrency, and overhead
(a) Perfect load balance and concurrency

(b) Good initial concurrency but poor load balance

(c) Good load balance but poor concurrency

(d) Good load balance and concurrency, but with overheads

(a)

(b)

(d)

Basic definitions

M	Memory complexity	Storage for given problem (e.g., words)
W	Computational complexity	Amount of work for given problem (e.g., flops)
V	Processor speed	Ops / time (e.g., flop/s)
T	Execution time	Elapsed wallclock (e.g., secs)
C	Computational cost	(No. procs) (exec. time) [e.g., processor-hours]

Basic definitions

M	Memory complexity	Storage for given problem (e.g., words)
W	Computational complexity	Amount of work for given problem (e.g., flops)
V	Processor speed	Ops / time (e.g., flop/s)
T	Execution time	Elapsed wallclock (e.g., secs)
C	Computational cost	(No. procs) [exec. (ex., processor-hours]

Subscripts denote processors used, e.g., $T_{1}=$ serial time, $W_{p}=$ work for p procs.

Basic definitions

M	Memory complexity	Storage for given problem (e.g., words)
W	Computational complexity	Amount of work for given problem (e.g., flops)
V	Processor speed	Ops / time (e.g., flop/s)
T	Execution time	Elapsed wallclock (e.g., secs)
C	Computational cost	(No. procs) [ex.g., processor-hours]

Assumptions: $M_{p} \geq M_{1}, W_{p} \geq W_{1}$

Quantities may be functions of one another

I. Consider: W(M) to indicate that work depends on memory complexity.
H. Example: Multiplying two $\mathrm{n} \times \mathrm{n}$ matrices

$$
M=O\left(n^{2}\right), W=O\left(n^{3}\right) \quad \Longrightarrow \quad W=O\left(M^{\frac{3}{2}}\right)
$$

Comments on processor speed, V

H. Processor speed will depend on M due to memory hierarchies

$$
V(M) \stackrel{?}{=} V(N) \quad ; \quad V\left(\frac{M}{p}\right) \stackrel{?}{\geq} V(M)
$$

:. Homogeneous vs. heterogeneous processors

$$
V_{p}(M) \stackrel{?}{=} V_{1}(M)
$$

A. Aggregate speed

$$
p \cdot V\left(\frac{M}{p}\right)
$$

Execution time vs. cost

H. Serial and parallel execution time: Work / Speed

$$
T_{1}=\frac{W_{1}}{V(M)} \quad T_{p}=\frac{W_{p}}{p \cdot V\left(\frac{M}{p}\right)}
$$

A. Cost = (no. procs) * (execution time)

$$
C_{1} \equiv T_{1} \quad C_{p} \equiv p \cdot T_{p}=\frac{W_{p}}{V\left(\frac{M}{p}\right)}
$$

Efficiency and speedup

H. Efficiency

$$
E_{p} \equiv \frac{C_{1}}{C_{p}}=\frac{T_{1}}{p \cdot T_{p}}=\frac{W_{1}}{W_{p}} \cdot \frac{V(M / p)}{V(M)}
$$

:. Speedup

$$
S_{p} \equiv \frac{T_{1}}{T_{p}}=p \cdot E_{p}
$$

A. Question: When might superlinear speedup occur?

Example: Summation using a tree algorithm

7. Memory usage is the same

$$
M_{1}=M_{p}=n
$$

Example: Summation using a tree algorithm

H. Work: parallel case does more for intermediate sums

$$
W_{1} \approx n \quad W_{p} \approx n+p \log p
$$

Example: Summation using a tree algorithm

H. Time: Assume perfect load balance \& concurrency

$$
T_{1} \approx n \quad T_{p} \approx \frac{n}{p}+\log p
$$

Example: Summation using a tree algorithm

.. Cost: (no. procs) * (time)

$$
C_{1} \approx n \quad C_{p} \approx n+p \log p
$$

Example: Summation using a tree algorithm

4. Efficiency

$$
E_{p} \equiv \frac{C_{1}}{C_{p}} \approx \frac{n}{n+p \log p}=\frac{1}{1+\frac{p}{n} \log p}
$$

Example: Summation using a tree algorithm

H. Speedup

$$
S_{p} \equiv \frac{T_{1}}{T_{p}} \approx \frac{n}{\frac{n}{p}+\log p}=\frac{p}{1+\frac{p}{n} \log p}
$$

Parallel scalability

H. Algorithm is scalable if

$$
E_{p}=\Theta(1) \text { as } p \rightarrow \infty
$$

H. Why use more processors?
:. Solve fixed problem in less time
". Solve larger problem in same time (or any time)
\#. Obtain sufficient aggregate memory
:. Tolerate latency and/or use all available bandwidth (Little's Law)

Problem scaling:

Fixed serial work

H. More processors eventually hits diminishing returns
A. Summation algorithm is not scalable in fixed work case

$$
E_{p} \equiv \frac{C_{1}}{C_{p}} \approx \frac{n}{n+p \log p}=\frac{1}{1+\frac{p}{n} \log p}
$$

Problem scaling:

Fixed execution time

\#. Applies when a strict time limit applies

$$
T_{1}=\frac{W_{1}}{V(M)} \quad T_{p}=\frac{W_{p}}{p \cdot V\left(\frac{M}{p}\right)}
$$

H. Algorithm scales only if work scales linearly with p
H. Summation algorithm does not scale in this scenario

$$
T_{1} \approx n \quad T_{p} \approx \frac{n}{p}+\log p
$$

Problem scaling: Scaled speedup

H. Fixed work per processor

$$
T_{1}=\frac{W_{1}}{V(M)}
$$

$$
T_{p}=\frac{\downarrow}{p \cdot V\left(\frac{M}{p}\right)}
$$

H. Summation algorithm does not scale in this scenario

$$
E_{p} \propto \frac{W_{1}}{W_{p}} \approx \frac{p n}{p n+p \log p}=\frac{1}{1+\frac{\log p}{n}} \longrightarrow 0
$$

Problem scaling

H. Fixed memory per processor
H. Fixed accuracy
H. Fixed efficiency (isoefficiency) \Rightarrow next time

