Review: Why hardware matters and why it's "parallel or bust"

H. Architectural dependencies matter
H. Amdahl's law: Speedup ≤ 1 / (Serial fraction)
H. Simple benchmarks exhibit complex, machine-specific behavior
H. Physical limits
H. Processors are exploiting most available ILP
\#. Little's Law: latency * bandwidth = concurrency
A. Power ~ (no. of cores) * (frequency ${ }^{2.5}$) and Perf ~ (no. cores) * (frequency)
H. Speed-of-light limit: ~ 1 Tflop/s with 1 TB memory on a $0.3 \times 0.3 \mathrm{~mm}$ die

From problem to parallel algorithm: An introductory example

Prof. Richard Vuduc
Georgia Institute of Technology
CSE/CS 8803 PNA, Spring 2008
[L.03] Tuesday, January 15, 2008

Sources for today's material

: . CS 267 (Yelick \& Demmel, UCB)
H. "Sourcebook", eds. Dongarra, et al.
H. Goldstein's book on classical mechanics
H. Perez, et al. on Poisson image editing; Frédo Durand (MIT)
A. Mike Heath at UIUC
H. Michelle Strout's serial sparse tiling algorithm

Problem: Seamless image cloning.

(Source: Pérez, et al., SIGGRAPH 2003)

Problem: Seamless image cloning.

(Source: Pérez, et al., SIGGRAPH 2003)

Idea: Clone the gradient...
(Source: Pérez, et al., SIGGRAPH 2003)

... then reconstruct.

(Source: Pérez, et al., SIGGRAPH 2003)

Why the gradient?

Human visual system is sensitive to it; gradients encode edges well.

Why the gradient?

Human visual system is sensitive to it; gradients encode edges well.

$$
\min _{f} \iint_{\Omega}|\nabla f-\mathbf{v}|^{2} \quad \text { with }\left.\quad f\right|_{\partial \Omega}=\left.f^{*}\right|_{\partial \Omega}
$$

Formulate as a "guided interpolation" problem.

$$
\nabla^{2} f=\nabla \cdot \mathbf{v} \quad \text { over } \Omega \quad \text { with }\left.\quad f\right|_{\partial \Omega}=\left.f^{*}\right|_{\partial \Omega}
$$

Necessary condition: Poisson's equation.

$$
\nabla^{2} f=0 \text { over } \Omega \quad \text { with }\left.\quad f\right|_{\partial \Omega}=\left.f^{*}\right|_{\partial \Omega}
$$

Simplest formulation: find the membrane interpolant $(\mathbf{v}=0)$.

$$
\min _{f} \int_{x_{1}}^{x_{2}}\left(f^{\prime}(x)\right)^{2} d x \quad \text { with } \quad f\left(x_{1}\right)=a \text { and } f\left(x_{2}\right)=b
$$

Aside: Calculus of variations in 1-D
(see whiteboard)

$$
\min _{f} \int_{x_{1}}^{x_{2}}\left(f^{\prime}(x)\right)^{2} d x \quad \text { s.t. } \quad f\left(x_{1}\right)=a \text { and } f\left(x_{2}\right)=b
$$

Solution: Linear interpolation

$$
\begin{aligned}
\mathbf{v}=\nabla g & \Longleftrightarrow \nabla^{2} f=\nabla \cdot \nabla g=\nabla^{2} g \\
& \Longleftrightarrow \nabla^{2}(f-g)=0
\end{aligned}
$$

Let $f=g+\hat{f} \quad \Longrightarrow \quad \nabla^{2} \hat{f}=0$, with $\left.\hat{f}\right|_{\partial \Omega}=\left.\left(f^{*}-g\right)\right|_{\partial \Omega}$

1-D analogue

1-D analogue

$$
g=M W
$$

1-D analogue

$$
g=M W
$$

$$
f^{*}=\begin{array}{|c}
\text { Wit } \\
\vdots \\
:=? ~
\end{array}
$$

1-D analogue

$$
g=\mathbb{M} \quad f^{*}=\mathbb{W}: \begin{aligned}
& f(x) \\
& i=? ~
\end{aligned}
$$

1-D analogue

$$
g=\mathbb{M} \quad f^{*}=\mathcal{W}: \begin{array}{c:c}
f(x) \\
\vdots & =?
\end{array}
$$

wilW

Parallel numerical solutions of Poisson's equation

Examples of "traditional" applications of Poisson's equation

H. Electrostatics \& gravitation: Potential = f(position)
H. Heat flow: Temperature $=f($ position, time $)$
H. Diffusion: Concentration $=f($ position, time $)$
:. Fluid flow: Velocity, pressure, density = f(position, time)
\#. Elasticity: Stress, strain $=\mathrm{f}($ position, time)
(2-D) Find $u(x, y): \quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f(x, y)$

Poisson's equation in 1-D:
$-\frac{d^{2} u(x)}{d x^{2}}=f(x), \quad 0<x<1, \quad u(0)=u(1)=0$

Poisson's equation in 1-D:
$-\frac{d^{2} u(x)}{d x^{2}}=f(x), \quad 0<x<1, \quad u(0)=u(1)=0$

Discretize:

Poisson's equation in 1-D:
$-\frac{d^{2} u(x)}{d x^{2}}=f(x), \quad 0<x<1, \quad u(0)=u(1)=0$

Approximate: $\quad-\left.\frac{d^{2} u(x)}{d x^{2}}\right|_{x=x_{i}} \approx \frac{2 u_{i}-u_{i-1}-u_{i+1}}{h^{2}}$

Poisson's equation in 1-D:
$-\frac{d^{2} u(x)}{d x^{2}}=f(x), \quad 0<x<1, \quad u(0)=u(1)=0$

Approximate: $\quad-\left.\frac{d^{2} u(x)}{d x^{2}}\right|_{x=x_{i}} \approx \frac{2 u_{i}-u_{i-1}-u_{i+1}}{h^{2}}$
"Stencil":

Express stencil in matrix notation

Approximation: $\quad \approx \frac{-u_{i-1}+2 u_{i}-u_{i+1}}{h^{2}}=f_{i} \triangleq f(i h)$

$$
\begin{aligned}
\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & \cdots & & \\
& & & -1 & 2
\end{array}\right) \cdot\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n}
\end{array}\right) & =-h^{2}\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots \\
f_{n}
\end{array}\right) \\
& \Downarrow \\
& T \cdot u
\end{aligned} \begin{aligned}
& \\
&
\end{aligned}
$$

2-D Poisson Equation

Year	Method	Reference	Storage	Flops
1947	Gaussian Elimination	Von Neumann \& Goldstine	n^{5}	n^{7}
1950	Optimal SOR	Young	n^{3}	$n^{4} \log n$
1971	Conj. grad.	Reid	n^{3}	$n^{3.5} \log n$
1977	FFT	Pickering	n^{3}	$n^{3} \log n$
1984	Full multigrid	Brandt	n^{3}	n^{3}

Recall: Poisson solution methods.

If $\mathrm{n}=64$, flops reduced by $\sim 16 \mathrm{M}$ [6 mo. to 1 sec.]; Source: Keyes (2004)

Algorithms for 2-D (3-D) Poisson, $N=n^{2}\left(=n^{3}\right)$

Algorithm	Serial	PRAM	Memory	\# procs
Dense LU	N^{3}	N	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Band LU	$\mathrm{N}^{2}\left(\mathrm{~N}^{7 / 3}\right)$	N	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{4 / 3}\right)$
Jacobi	$\mathrm{N}^{2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{2 / 3}\right)$	N	N
Explicit inverse	N^{2}	$\log \mathrm{~N}$	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Conj. grad.	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2(1 / 3)} \log \mathrm{N}$	N	N
RB SOR	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2}\left(\mathrm{~N}^{1 / 3}\right)$	N	N
Sparse LU	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{2}\right)$	$\mathrm{N}^{1 / 2}$	$\mathrm{~N} \log \mathrm{~N}\left(\mathrm{~N}^{4 / 3}\right)$	N
FFT	$\mathrm{N} \log \mathrm{N}$	$\log \mathrm{N}$	N	N
Multigrid	N	$\log ^{2} \mathrm{~N}$	N	N
Lower bound	\mathbf{N}	$\log ^{\mathrm{N}}$	N	

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

Cost may depend on problem properties

Alg	Cost
Dense LU	$\mathrm{N}^{3}\left(\mathrm{p}=\mathrm{N}^{2} \Rightarrow \mathrm{~N}\right)$
Band LU	$\mathrm{N}^{*} \mathrm{~b}^{2}\left(\mathrm{p}=\mathrm{b}^{2} \Rightarrow \mathrm{~N}\right)$
Jacobi	Cost(SpMV) * (\# its), where t = k
CG	(SpMV + dot) * (\# its), where \# its = sqrt(k)
RB SOR	(SpMV) * (\# its), where \#its = sqrt(k)

H. \quad Dim. $=n^{2}\left(n^{3}\right)$
E. Bandwidth $\mathrm{b}=\mathrm{n}\left(\mathrm{n}^{2}\right)$
A. Condition number $\mathrm{k}=\mathrm{n}^{2}$ (same)
E. No. iterations = t
H. SpMV = sparse matrix-vector multiply

"Practical" meshes

H. Regular 1-D, 2-D, and 3-D are building blocks
H. Practical meshes are irregular
H. Composite: Stitch regular meshes
\#. Unstructured: Arbitrary mesh points and connectivity
H. Adaptive: Change during solve

Example mesh: Mechanical structure

Matrix A, in natural order

Example mesh: NASA airfoil

Example mesh: Adaptive mesh refinement (AMR)

Mesh refined near fine-grained behavior.
Source: Bell \& Colella (LBNL)

Administrivia

Administrivia

H. Need accounts? Send me an e-mail. HW 1 goes out 1/24
H. Old T-square site partly restored; resubmit HW 0 (wait for mail from me)
\#. Project proposals "assigned," due ~ 7-8th week
.. Auditors?

Serial and parallel Jacobi

Algorithms for 2-D (3-D) Poisson, $N=n^{2}\left(=n^{3}\right)$

Algorithm	Serial	PRAM	Memory	\# procs
Dense LU	N^{3}	N	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Band LU	$\mathrm{N}^{2}\left(\mathrm{~N}^{7 / 3}\right)$	N	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{4 / 3}\right)$
Jacobi	$\mathbf{N}^{2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathbf{N}\left(\mathrm{N}^{2 / 3}\right)$	\mathbf{N}	\mathbf{N}
Explicit inverse	N^{2}	$\log \mathrm{~N}$	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
Conj. grad.	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2(1 / 3)} \log \mathrm{N}$	N	N
RB SOR	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2}\left(\mathrm{~N}^{1 / 3}\right)$	N	N
Sparse LU	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{2}\right)$	$\mathrm{N}^{1 / 2}$	$\mathrm{~N} \log \mathrm{~N}\left(\mathrm{~N}^{4 / 3}\right)$	N
FFT	$\mathrm{N} \log \mathrm{N}$	$\log \mathrm{N}$	N	N
Multigrid	N	$\log ^{2} \mathrm{~N}$	N	N
Lower bound	\mathbf{N}	$\log ^{\mathbf{N}}$	\mathbf{N}	

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

Jacobi's method

A. Rearrange terms in (2-D) Poisson:

$$
u_{i, j}=\frac{1}{4}\left(u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}+h^{2} f_{i, j}\right)
$$

H. For each (i, j), iteratively update (weighted averaging):

$$
u_{i, j}^{t+1}=\frac{1}{4}\left(u_{i-1, j}^{t}+u_{i+1, j}^{t}+u_{i, j-1}^{t}+u_{i, j+1}^{t}+h^{2} f_{i, j}\right)
$$

\#. Motivation: Make solution at each point match discrete Poisson exactly.

Jacobi's method is easy to parallelize

H. Parallelism: Update all points independently
:. Partition domain into blocks
:. $\quad n^{2} / p$ elements / block
I. Communicate at boundaries
H. n/p per neighbor
F. Small if $n \gg p$

Block partition domain

Use ghost zones/nodes to buffer neighboring data.

Block partition domain

Note: Each iteration is a matrixvector multiply.

$$
\begin{aligned}
u_{i, j}^{t+1} & =\frac{1}{4}\left(u_{i-1, j}^{t}+u_{i+1, j}^{t}+u_{i, j-1}^{t}+u_{i, j+1}^{t}+h^{2} f_{i, j}\right) \\
& \Longrightarrow \\
u^{t+1} & =\frac{1}{4}(T-I) u^{t}+f
\end{aligned}
$$

What about locality?

Recall powers-kernel example from Lecture 1: $y=A^{2 *} x$

What about locality?

Serial sparse tiling algorithm (Strout, et al., 2001)

What about locality?

Serial sparse tiling algorithm (Strout, et al., 2001)

Convergence of Jacobi's method

H. Converges in $O\left(N=n^{2}\right)$ steps, so serial complexity is $O\left(N^{2}\right)$.
H. Define error at each step as:

$$
\epsilon_{t} \triangleq \sqrt{\sum_{i, j}\left(u_{i, j}^{t}-u_{i, j}\right)^{2}}
$$

A. For Jacobi, can show:

$$
\epsilon_{t} \leq\left(\cos \frac{\pi}{n+1}\right)^{t} \epsilon_{0} \stackrel{n \rightarrow \infty}{\approx}\left(1-\frac{\pi^{2}}{4} \cdot \frac{t}{n^{2}}\right) \epsilon_{0}
$$

Numerical example illustrating slow convergence

True solution

Summary: Parallelization process

Summary: Parallelization process

E. Lots of opportunities to use "math" to solve interesting problems
:. Four-step parallelization methodology
H. Partition: Identify fine-grained tasks
H. Determine communication pattern among tasks
H. Agglomerate fine-grained tasks into coarse-grained tasks to control communication requirements/overheads
H. Map tasks to processors

