
Review: Why hardware matters and 
why it’s “parallel or bust”

Architectural dependencies matter

Amdahl’s law: Speedup ≤ 1 / (Serial fraction)

Simple benchmarks exhibit complex, machine-specific behavior

Physical limits

Processors are exploiting most available ILP

Little’s Law: latency * bandwidth = concurrency

Power ~ (no. of cores) * (frequency2.5) and Perf ~ (no. cores) * (frequency)

Speed-of-light limit: ~ 1 Tflop/s with 1 TB memory on a 0.3 x 0.3 mm die
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From problem to parallel algorithm:
An introductory example

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA, Spring 2008

[L.03] Tuesday, January 15, 2008

2



Sources for today’s material

CS 267 (Yelick & Demmel, UCB)

“Sourcebook”, eds. Dongarra, et al.

Goldstein’s book on classical mechanics

Perez, et al. on Poisson image editing; Frédo Durand (MIT)

Mike Heath at UIUC

Michelle Strout’s serial sparse tiling algorithm
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Source: Dubey, et al., of Intel (2005)
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Problem: Seamless image cloning.
(Source: Pérez, et al., SIGGRAPH 2003)
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Problem: Seamless image cloning.
(Source: Pérez, et al., SIGGRAPH 2003)
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Idea: Clone the gradient...
(Source: Pérez, et al., SIGGRAPH 2003)
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… then reconstruct.
(Source: Pérez, et al., SIGGRAPH 2003)
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Why the gradient?
Human visual system is sensitive to it; gradients encode edges well.
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Why the gradient?
Human visual system is sensitive to it; gradients encode edges well.
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Formulate as a “guided interpolation” problem.

min
f

∫∫

Ω
|∇f − v|2 with f |∂Ω = f∗|∂Ω
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Necessary condition: Poisson’s equation.

∇2f = ∇ · v over Ω with f |∂Ω = f∗|∂Ω
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Simplest formulation: find the membrane interpolant (v = 0).

∇2f = 0 over Ω with f |∂Ω = f∗|∂Ω

12



Aside: Calculus of variations in 1-D
(see whiteboard)

x2x1

f(x) = ?

min
f

∫ x2

x1

(f ′(x))2dx with f(x1) = a and f(x2) = b
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Solution: Linear interpolation

min
f

∫ x2

x1

(f ′(x))2dx s.t. f(x1) = a and f(x2) = b

x2x1

f(x)
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x2x1

f(x)
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v = ∇g =⇒ ∇2f = ∇ ·∇g = ∇2g

⇐⇒ ∇2(f − g) = 0

Let f = g + f̂ =⇒ ∇2f̂ = 0, with f̂ |∂Ω = (f∗ − g)|∂Ω
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1-D analogue

17



1-D analogue

g =
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1-D analogue

g =
f(x)
= ?

f∗ =
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1-D analogue

= f̂

g =
f(x)
= ?

f∗ =

17



1-D analogue

= f̂

g =

= g + f̂

f(x)
= ?

f∗ =
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Parallel numerical solutions of 
Poisson’s equation
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Examples of “traditional” 
applications of Poisson’s equation

Electrostatics & gravitation: Potential = f(position)

Heat flow: Temperature = f(position, time)

Diffusion: Concentration = f(position, time)

Fluid flow: Velocity, pressure, density = f(position, time)

Elasticity: Stress, strain = f(position, time)

(2-D) Find u(x, y):
∂2u

∂x2
+

∂2u

∂y2
= f(x, y)
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Poisson’s equation in 1-D:
−d2u(x)

dx2
= f(x), 0 < x < 1, u(0) = u(1) = 0
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Poisson’s equation in 1-D:

Discretize:

ui = u(i · h)

i = 0 n + 1
h =

1
n + 1

−d2u(x)
dx2

= f(x), 0 < x < 1, u(0) = u(1) = 0
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Poisson’s equation in 1-D:

Approximate: −d2u(x)
dx2

|x=xi ≈
2ui − ui−1 − ui+1

h2

Discretize:

ui = u(i · h)

i = 0 n + 1
h =

1
n + 1

−d2u(x)
dx2

= f(x), 0 < x < 1, u(0) = u(1) = 0
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Poisson’s equation in 1-D:

Approximate: −d2u(x)
dx2

|x=xi ≈
2ui − ui−1 − ui+1

h2

2-1 -1“Stencil”:

Discretize:

ui = u(i · h)

i = 0 n + 1
h =

1
n + 1

−d2u(x)
dx2

= f(x), 0 < x < 1, u(0) = u(1) = 0
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Express stencil in matrix notation

Approximation: ≈ −ui−1 + 2ui − ui+1

h2
= fi ! f(ih)





2 −1
−1 2 −1

−1 2 −1
· · ·

−1 2




·





u1

u2

u3
...

un




= −h2





f1

f2

f3
...

fn





⇓
T · u = −h2f
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2-D Poisson Equation

Graph and stencil

T =





4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4




1 2 3

4 5 6

7 8 9

2 4 5 6 8
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Recall: Poisson solution methods.
If n=64, flops reduced by ~16 M [6 mo. to 1 sec.]; Source: Keyes (2004)

Year Method Reference Storage Flops

1947

1950

1971

1977

1984

Gaussian
Elimination

Von Neumann 
& Goldstine

n5 n7

Optimal SOR Young n3 n4 log n

Conj. grad. Reid n3 n3.5 log n

FFT Pickering n3 n3 log n

Full multigrid Brandt n3 n3

∇2u=f 64

64 64
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Algorithm Serial PRAM Memory # procs

Dense LU

Band LU

Jacobi

Explicit inverse

Conj. grad.

RB SOR

Sparse LU

FFT

Multigrid

Lower bound

N3 N N2 N2

N2 (N7/3) N N3/2 (N5/3) N (N4/3)

N2 (N5/3) N (N2/3) N N

N2 log N N2 N2

N3/2 (N4/3) N1/2(1/3) log N N N

N3/2 (N4/3) N1/2 (N1/3) N N

N3/2 (N2) N1/2 N log N (N4/3) N

N log N log N N N

N log2 N N N

N log N N

Algorithms for 2-D (3-D) Poisson, N=n2 (=n3)

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)
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Cost may depend on problem 
properties

Dim. = n2 (n3)

Bandwidth b = n (n2)

Condition number k = n2 (same)

No. iterations = t

SpMV = sparse matrix-vector 
multiply

Alg Cost

Dense LU

Band LU

Jacobi

CG

RB SOR

N3 (p=N2 ⇒ N)

N*b2 (p=b2 ⇒ N)

Cost(SpMV) * (# its),
where t = k

(SpMV + dot) * (# its),
where # its = sqrt(k)

(SpMV) * (# its),
where #its = sqrt(k)
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“Practical” meshes

Regular 1-D, 2-D, and 3-D are building blocks

Practical meshes are irregular

Composite: Stitch regular meshes

Unstructured: Arbitrary mesh points and connectivity

Adaptive: Change during solve
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Example mesh:
Mechanical structure
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Example mesh:
NASA airfoil
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Example mesh:
Adaptive mesh refinement (AMR)

Mesh refined near fine-grained behavior.
Source: Bell & Colella (LBNL)
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Administrivia
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Administrivia

Need accounts? Send me an e-mail. HW 1 goes out 1/24

Old T-square site partly restored; resubmit HW 0 (wait for mail from me)

Project proposals “assigned,” due ~ 7-8th week

Auditors?

31



Serial and parallel Jacobi
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Algorithm Serial PRAM Memory # procs

Dense LU

Band LU

Jacobi

Explicit inverse

Conj. grad.

RB SOR

Sparse LU

FFT

Multigrid

Lower bound

N3 N N2 N2

N2 (N7/3) N N3/2 (N5/3) N (N4/3)

N2 (N5/3) N (N2/3) N N

N2 log N N2 N2

N3/2 (N4/3) N1/2(1/3) log N N N

N3/2 (N4/3) N1/2 (N1/3) N N

N3/2 (N2) N1/2 N log N (N4/3) N

N log N log N N N

N log2 N N N

N log N N

Algorithms for 2-D (3-D) Poisson, N=n2 (=n3)

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)
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Jacobi’s method

Rearrange terms in (2-D) Poisson:

ui,j =
1
4

(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 + h2fi,j

)

For each (i, j), iteratively update (weighted averaging):

ut+1
i,j =

1
4

(
ut

i−1,j + ut
i+1,j + ut

i,j−1 + ut
i,j+1 + h2fi,j

)

Motivation: Make solution at each point match discrete Poisson exactly.
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Jacobi’s method is easy to 
parallelize

Parallelism: Update all points 
independently

Partition domain into blocks

n2/p elements / block

Communicate at boundaries

n/p per neighbor

Small if n >> p

Block partition domain
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Use ghost zones/nodes to buffer 
neighboring data.

To compute green

Copy yellow

Compute blue

Block partition domain
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Note: Each iteration is a matrix-
vector multiply.

ut+1
i,j =

1
4

(
ut

i−1,j + ut
i+1,j + ut

i,j−1 + ut
i,j+1 + h2fi,j

)

=⇒

ut+1 =
1
4
(T − I)ut + f
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y1

y2

y3

y4

y5

t1

t2

t3

t4

t5

x1

x2

x3

x4

x5

a11 a11

a12 a12

What about locality?
Recall powers-kernel example from Lecture 1: y = A2*x
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What about locality?
Serial sparse tiling algorithm (Strout, et al., 2001)
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Convergence of Jacobi’s method

Converges in O(N=n2) steps, so serial complexity is O(N2).

Define error at each step as:

For Jacobi, can show:

εt !
√∑

i,j

(ut
i,j − ui,j)2

εt ≤
(

cos
π

n + 1

)t

ε0
n→∞≈

(
1− π2

4
· t

n2

)
ε0
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Numerical example illustrating slow 
convergence

RHS True solution

5 steps of 
another 

technique

5 steps of Jacobi
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“In conclusion…”
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Summary: Parallelization process
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Summary: Parallelization process

Lots of opportunities to use “math” to solve interesting problems

Four-step parallelization methodology

Partition: Identify fine-grained tasks

Determine communication pattern among tasks

Agglomerate fine-grained tasks into coarse-grained tasks to control 
communication requirements/overheads

Map tasks to processors
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