Η

Review: Why hardware matters and why it's "parallel or bust"

- Architectural dependencies matter
 - Amdahl's law: Speedup ≤ 1 / (Serial fraction)
 - Simple benchmarks exhibit complex, machine-specific behavior
- Physical limits
 - Processors are exploiting most available ILP
 - Little's Law: latency * bandwidth = concurrency
 - Power ~ (no. of cores) * (frequency^{2.5}) and Perf ~ (no. cores) * (frequency)
 - Speed-of-light limit: ~ 1 Tflop/s with 1 TB memory on a 0.3 x 0.3 mm die

From problem to parallel algorithm: An introductory example

Prof. Richard Vuduc Georgia Institute of Technology CSE/CS 8803 PNA, Spring 2008 [L.03] Tuesday, January 15, 2008

Sources for today's material

- CS 267 (Yelick & Demmel, UCB)
- Sourcebook", eds. Dongarra, et al.
- Goldstein's book on classical mechanics
- Perez, et al. on Poisson image editing; Frédo Durand (MIT)
- Mike Heath at UIUC
- Michelle Strout's serial sparse tiling algorithm

Problem: Seamless image cloning.

Problem: Seamless image cloning.

Idea: Clone the gradient...

... then reconstruct.

Why the gradient?

Human visual system is sensitive to it; gradients encode edges well.

Why the gradient?

Human visual system is sensitive to it; gradients encode edges well.

$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \quad \text{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

Formulate as a "guided interpolation" problem.

$\nabla^2 f = \nabla \cdot \mathbf{v}$ over Ω with $f|_{\partial\Omega} = f^*|_{\partial\Omega}$

Necessary condition: Poisson's equation.

$\nabla^2 f = 0 \text{ over } \Omega \quad \text{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$

Simplest formulation: find the **membrane interpolant** (v = 0).

Aside: Calculus of variations in 1-D (see whiteboard)

Solution: Linear interpolation

$$\mathbf{v} = \nabla g \implies \nabla^{-} f = \nabla \cdot \nabla g = \nabla^{-} g$$
$$\iff \nabla^{2} (f - g) = 0$$
Let $f = g + \hat{f} \implies \nabla^{2} \hat{f} = 0$, with $\hat{f}|_{\partial\Omega} = (f^{*} - g)|_{\partial\Omega}$

1-D analogue

 $g = \bigwedge$

Parallel numerical solutions of Poisson's equation

Η

Examples of "traditional" applications of Poisson's equation

- Electrostatics & gravitation: Potential = f(position)
- Heat flow: Temperature = f(position, time)
- Diffusion: Concentration = f(position, time)
- Fluid flow: Velocity, pressure, density = f(position, time)
- Elasticity: Stress, strain = f(position, time)

(2-D) Find
$$u(x,y)$$
: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)$

Poisson's equation in 1-D: $-\frac{d^2u(x)}{dx^2} = f(x), \quad 0 < x < 1, \quad u(0) = u(1) = 0$

Poisson's equation in 1-D: $-\frac{d^2u(x)}{dx^2} = f(x), \quad 0 < x < 1, \quad u(0) = u(1) = 0$

Poisson's equation in 1-D: $-\frac{d^2 u(x)}{dr^2} = f(x), \quad 0 < x < 1, \quad u(0) = u(1) = 0$

Discretize:

Approximate: $-\frac{d^2 u(x)}{d a^2}|_{x=x_i} \approx \frac{2u_i - u_{i-1} - u_{i+1}}{h^2}$

Poisson's equation in 1-D: $-\frac{d^2 u(x)}{dx^2} = f(x), \quad 0 < x < 1, \quad u(0) = u(1) = 0$

Ħ

Express stencil in matrix notation

2-D Poisson Equation

	Year	Method	Reference	Storage	Flops
١	1947	Gaussian Elimination	Von Neumann & Goldstine	n ⁵	n ⁷
	1950	Optimal SOR	Young	n ³	n ⁴ log n
	1971	Conj. grad.	Reid	n ³	n ^{3.5} log n
	1977	FFT	Pickering	n ³	n ³ log n
	1984	Full multigrid	Brandt	n ³	n ³

Recall: Poisson solution methods.

If n=64, flops reduced by ~16 M [6 mo. to 1 sec.]; Source: Keyes (2004)

Algorithms for 2-D (3-D) Poisson, N=n² (=n³)

Algorithm	Serial	PRAM	Memory	# procs
Dense LU	N ³	Ν	N ²	N ²
Band LU	N ² (N ^{7/3})	Ν	N ^{3/2} (N ^{5/3})	N (N ^{4/3})
Jacobi	N ² (N ^{5/3})	N (N ^{2/3})	N	Ν
Explicit inverse	N ²	log N	N ²	N ²
Conj. grad.	N ^{3/2} (N ^{4/3})	N ^{1/2(1/3)} log N	N	Ν
RB SOR	N ^{3/2} (N ^{4/3})	N ^{1/2} (N ^{1/3})	N	Ν
Sparse LU	N ^{3/2} (N ²)	N ^{1/2}	N log N (N ^{4/3})	Ν
FFT	N log N	log N	Ν	Ν
Multigrid	Ν	log ² N	N	Ν
Lower bound	Ν	log N	Ν	

PRAM = idealized parallel model with zero communication cost. *Source: Demmel (1997)* F

Η

Cost may depend on problem properties

Alg	Cost
Dense LU	N^3 (p= $N^2 \Rightarrow N$)
Band LU	$N^*b^2 (p=b^2 \Rightarrow N)$
Jacobi	Cost(SpMV) * (# its), where t = k
CG	(SpMV + dot) * (# its), where # its = sqrt(k)
RB SOR	(SpMV) * (# its), where #its = sqrt(k)

Dim. = n^2 (n^3)

- Bandwidth $b = n (n^2)$
- Condition number $k = n^2$ (same)
- No. iterations = t
- SpMV = sparse matrix-vector multiply

"Practical" meshes

- Regular 1-D, 2-D, and 3-D are building blocks
- Practical meshes are irregular

- **Composite**: Stitch regular meshes
- **Unstructured**: Arbitrary mesh points and connectivity
- Adaptive: Change during solve

Example mesh: Mechanical structure

Example mesh: NASA airfoil

Finite Element Mesh of NASA Airfoil 0.9 0.8 0.7 D.E 0.5 0.4 0.3 0.2 0.1 0 L 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 4253 grid points

Example mesh: Adaptive mesh refinement (AMR)

Mesh refined near fine-grained behavior. Source: Bell & Colella (LBNL)

Ħ

Administrivia

Administrivia

- Need accounts? Send me an e-mail. HW 1 goes out 1/24
- Old T-square site partly restored; resubmit HW 0 (wait for mail from me)
- Project proposals "assigned," due ~ 7-8th week
- Auditors?

Serial and parallel Jacobi

Algorithms for 2-D (3-D) Poisson, N=n² (=n³)

Algorithm	Serial	PRAM	Memory	# procs
Dense LU	N ³	Ν	N ²	N ²
Band LU	N ² (N ^{7/3})	Ν	N ^{3/2} (N ^{5/3})	N (N ^{4/3})
Jacobi	N ² (N ^{5/3})	N (N ^{2/3})	N	Ν
Explicit inverse	N ²	log N	N ²	N ²
Conj. grad.	N ^{3/2} (N ^{4/3})	N ^{1/2(1/3)} log N	Ν	Ν
RB SOR	N ^{3/2} (N ^{4/3})	N ^{1/2} (N ^{1/3})	Ν	Ν
Sparse LU	N ^{3/2} (N ²)	N ^{1/2}	N log N (N ^{4/3})	Ν
FFT	N log N	log N	Ν	Ν
Multigrid	Ν	log ² N	Ν	Ν
Lower bound	Ν	log N	Ν	

PRAM = idealized parallel model with zero communication cost. *Source: Demmel (1997)* F

Jacobi's method

Rearrange terms in (2-D) Poisson:

$$u_{i,j} = \frac{1}{4} \left(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} + h^2 f_{i,j} \right)$$

For each (i, j), iteratively update (weighted averaging):

$$u_{i,j}^{t+1} = \frac{1}{4} \left(u_{i-1,j}^t + u_{i+1,j}^t + u_{i,j-1}^t + u_{i,j+1}^t + h^2 f_{i,j} \right)$$

Motivation: Make solution at each point match discrete Poisson exactly.

F

Jacobi's method is easy to parallelize

- Parallelism: Update all points independently
- Partition domain into blocks
 - n²/p elements / block
- Communicate at boundaries Ξ.
 - n/p per neighbor
 - Small if n >> p

Block partition domain

Η

Use ghost zones/nodes to buffer neighboring data.

Block partition domain

Note: Each iteration is a matrixvector multiply.

$$u_{i,j}^{t+1} = \frac{1}{4} \left(u_{i-1,j}^t + u_{i+1,j}^t + u_{i,j-1}^t + u_{i,j+1}^t + h^2 f_{i,j} \right)$$

$$\implies$$
$$u^{t+1} = \frac{1}{4} (T-I)u^t + f$$

What about locality?

Recall powers-kernel example from Lecture 1: $y = A^{2*}x$

What about locality?

Serial sparse tiling algorithm (Strout, et al., 2001)

What about locality?

Serial sparse tiling algorithm (Strout, et al., 2001)

Convergence of Jacobi's method

Converges in $O(N=n^2)$ steps, so serial complexity is $O(N^2)$.

Define error at each step as:

$$\epsilon_t \triangleq \sqrt{\sum_{i,j} (u_{i,j}^t - u_{i,j})^2}$$

For Jacobi, can show:

$$\epsilon_t \le \left(\cos\frac{\pi}{n+1}\right)^t \epsilon_0 \quad \stackrel{n \to \infty}{\approx} \quad \left(1 - \frac{\pi^2}{4} \cdot \frac{t}{n^2}\right) \epsilon_0$$

Numerical example illustrating slow convergence

"In conclusion..."

Η

Summary: Parallelization process

Summary: Parallelization process

- Lots of opportunities to use "math" to solve interesting problems
- Four-step parallelization methodology
 - **Partition**: Identify fine-grained tasks
 - Determine **communication** pattern among tasks
 - Agglomerate fine-grained tasks into coarse-grained tasks to control communication requirements/overheads
 - Map tasks to processors