
Review: Why hardware matters and
why it’s “parallel or bust”

Architectural dependencies matter

Amdahl’s law: Speedup ≤ 1 / (Serial fraction)

Simple benchmarks exhibit complex, machine-specific behavior

Physical limits

Processors are exploiting most available ILP

Little’s Law: latency * bandwidth = concurrency

Power ~ (no. of cores) * (frequency2.5) and Perf ~ (no. cores) * (frequency)

Speed-of-light limit: ~ 1 Tflop/s with 1 TB memory on a 0.3 x 0.3 mm die

1

From problem to parallel algorithm:
An introductory example

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA, Spring 2008

[L.03] Tuesday, January 15, 2008

2

Sources for today’s material

CS 267 (Yelick & Demmel, UCB)

“Sourcebook”, eds. Dongarra, et al.

Goldstein’s book on classical mechanics

Perez, et al. on Poisson image editing; Frédo Durand (MIT)

Mike Heath at UIUC

Michelle Strout’s serial sparse tiling algorithm

3

Source: Dubey, et al., of Intel (2005)

4

Problem: Seamless image cloning.
(Source: Pérez, et al., SIGGRAPH 2003)

5

Problem: Seamless image cloning.
(Source: Pérez, et al., SIGGRAPH 2003)

6

Idea: Clone the gradient...
(Source: Pérez, et al., SIGGRAPH 2003)

7

… then reconstruct.
(Source: Pérez, et al., SIGGRAPH 2003)

8

Why the gradient?
Human visual system is sensitive to it; gradients encode edges well.

9

Why the gradient?
Human visual system is sensitive to it; gradients encode edges well.

9

Formulate as a “guided interpolation” problem.

min
f

∫∫

Ω
|∇f − v|2 with f |∂Ω = f∗|∂Ω

10

Necessary condition: Poisson’s equation.

∇2f = ∇ · v over Ω with f |∂Ω = f∗|∂Ω

11

Simplest formulation: find the membrane interpolant (v = 0).

∇2f = 0 over Ω with f |∂Ω = f∗|∂Ω

12

Aside: Calculus of variations in 1-D
(see whiteboard)

x2x1

f(x) = ?

min
f

∫ x2

x1

(f ′(x))2dx with f(x1) = a and f(x2) = b

13

Solution: Linear interpolation

min
f

∫ x2

x1

(f ′(x))2dx s.t. f(x1) = a and f(x2) = b

x2x1

f(x)

14

x2x1

f(x)

15

v = ∇g =⇒ ∇2f = ∇ ·∇g = ∇2g

⇐⇒ ∇2(f − g) = 0

Let f = g + f̂ =⇒ ∇2f̂ = 0, with f̂ |∂Ω = (f∗ − g)|∂Ω

16

1-D analogue

17

1-D analogue

g =

17

1-D analogue

g =
f(x)
= ?

f∗ =

17

1-D analogue

= f̂

g =
f(x)
= ?

f∗ =

17

1-D analogue

= f̂

g =

= g + f̂

f(x)
= ?

f∗ =

17

Parallel numerical solutions of
Poisson’s equation

18

Examples of “traditional”
applications of Poisson’s equation

Electrostatics & gravitation: Potential = f(position)

Heat flow: Temperature = f(position, time)

Diffusion: Concentration = f(position, time)

Fluid flow: Velocity, pressure, density = f(position, time)

Elasticity: Stress, strain = f(position, time)

(2-D) Find u(x, y):
∂2u

∂x2
+

∂2u

∂y2
= f(x, y)

19

Poisson’s equation in 1-D:
−d2u(x)

dx2
= f(x), 0 < x < 1, u(0) = u(1) = 0

20

Poisson’s equation in 1-D:

Discretize:

ui = u(i · h)

i = 0 n + 1
h =

1
n + 1

−d2u(x)
dx2

= f(x), 0 < x < 1, u(0) = u(1) = 0

20

Poisson’s equation in 1-D:

Approximate: −d2u(x)
dx2

|x=xi ≈
2ui − ui−1 − ui+1

h2

Discretize:

ui = u(i · h)

i = 0 n + 1
h =

1
n + 1

−d2u(x)
dx2

= f(x), 0 < x < 1, u(0) = u(1) = 0

20

Poisson’s equation in 1-D:

Approximate: −d2u(x)
dx2

|x=xi ≈
2ui − ui−1 − ui+1

h2

2-1 -1“Stencil”:

Discretize:

ui = u(i · h)

i = 0 n + 1
h =

1
n + 1

−d2u(x)
dx2

= f(x), 0 < x < 1, u(0) = u(1) = 0

20

Express stencil in matrix notation

Approximation: ≈ −ui−1 + 2ui − ui+1

h2
= fi ! f(ih)





2 −1
−1 2 −1

−1 2 −1
· · ·

−1 2




·





u1

u2

u3
...

un




= −h2





f1

f2

f3
...

fn





⇓
T · u = −h2f

21

2-D Poisson Equation

Graph and stencil

T =





4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4




1 2 3

4 5 6

7 8 9

2 4 5 6 8

22

Recall: Poisson solution methods.
If n=64, flops reduced by ~16 M [6 mo. to 1 sec.]; Source: Keyes (2004)

Year Method Reference Storage Flops

1947

1950

1971

1977

1984

Gaussian
Elimination

Von Neumann
& Goldstine

n5 n7

Optimal SOR Young n3 n4 log n

Conj. grad. Reid n3 n3.5 log n

FFT Pickering n3 n3 log n

Full multigrid Brandt n3 n3

∇2u=f 64

64 64

23

Algorithm Serial PRAM Memory # procs

Dense LU

Band LU

Jacobi

Explicit inverse

Conj. grad.

RB SOR

Sparse LU

FFT

Multigrid

Lower bound

N3 N N2 N2

N2 (N7/3) N N3/2 (N5/3) N (N4/3)

N2 (N5/3) N (N2/3) N N

N2 log N N2 N2

N3/2 (N4/3) N1/2(1/3) log N N N

N3/2 (N4/3) N1/2 (N1/3) N N

N3/2 (N2) N1/2 N log N (N4/3) N

N log N log N N N

N log2 N N N

N log N N

Algorithms for 2-D (3-D) Poisson, N=n2 (=n3)

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

24

Cost may depend on problem
properties

Dim. = n2 (n3)

Bandwidth b = n (n2)

Condition number k = n2 (same)

No. iterations = t

SpMV = sparse matrix-vector
multiply

Alg Cost

Dense LU

Band LU

Jacobi

CG

RB SOR

N3 (p=N2 ⇒ N)

N*b2 (p=b2 ⇒ N)

Cost(SpMV) * (# its),
where t = k

(SpMV + dot) * (# its),
where # its = sqrt(k)

(SpMV) * (# its),
where #its = sqrt(k)

25

“Practical” meshes

Regular 1-D, 2-D, and 3-D are building blocks

Practical meshes are irregular

Composite: Stitch regular meshes

Unstructured: Arbitrary mesh points and connectivity

Adaptive: Change during solve

26

Example mesh:
Mechanical structure

27

Example mesh:
NASA airfoil

28

Example mesh:
Adaptive mesh refinement (AMR)

Mesh refined near fine-grained behavior.
Source: Bell & Colella (LBNL)

29

Administrivia

30

Administrivia

Need accounts? Send me an e-mail. HW 1 goes out 1/24

Old T-square site partly restored; resubmit HW 0 (wait for mail from me)

Project proposals “assigned,” due ~ 7-8th week

Auditors?

31

Serial and parallel Jacobi

32

Algorithm Serial PRAM Memory # procs

Dense LU

Band LU

Jacobi

Explicit inverse

Conj. grad.

RB SOR

Sparse LU

FFT

Multigrid

Lower bound

N3 N N2 N2

N2 (N7/3) N N3/2 (N5/3) N (N4/3)

N2 (N5/3) N (N2/3) N N

N2 log N N2 N2

N3/2 (N4/3) N1/2(1/3) log N N N

N3/2 (N4/3) N1/2 (N1/3) N N

N3/2 (N2) N1/2 N log N (N4/3) N

N log N log N N N

N log2 N N N

N log N N

Algorithms for 2-D (3-D) Poisson, N=n2 (=n3)

PRAM = idealized parallel model with zero communication cost.
Source: Demmel (1997)

33

Jacobi’s method

Rearrange terms in (2-D) Poisson:

ui,j =
1
4

(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 + h2fi,j

)

For each (i, j), iteratively update (weighted averaging):

ut+1
i,j =

1
4

(
ut

i−1,j + ut
i+1,j + ut

i,j−1 + ut
i,j+1 + h2fi,j

)

Motivation: Make solution at each point match discrete Poisson exactly.

34

Jacobi’s method is easy to
parallelize

Parallelism: Update all points
independently

Partition domain into blocks

n2/p elements / block

Communicate at boundaries

n/p per neighbor

Small if n >> p

Block partition domain

35

Use ghost zones/nodes to buffer
neighboring data.

To compute green

Copy yellow

Compute blue

Block partition domain

36

Note: Each iteration is a matrix-
vector multiply.

ut+1
i,j =

1
4

(
ut

i−1,j + ut
i+1,j + ut

i,j−1 + ut
i,j+1 + h2fi,j

)

=⇒

ut+1 =
1
4
(T − I)ut + f

37

y1

y2

y3

y4

y5

t1

t2

t3

t4

t5

x1

x2

x3

x4

x5

a11 a11

a12 a12

What about locality?
Recall powers-kernel example from Lecture 1: y = A2*x

38

y1

y2

y3

y4

y5

t1

t2

t3

t4

t5

x1

x2

x3

x4

x5

a11 a11

a12 a12

What about locality?
Serial sparse tiling algorithm (Strout, et al., 2001)

39

y1

y2

y3

y4

y5

t1

t2

t3

t4

t5

x1

x2

x3

x4

x5

What about locality?
Serial sparse tiling algorithm (Strout, et al., 2001)

40

Convergence of Jacobi’s method

Converges in O(N=n2) steps, so serial complexity is O(N2).

Define error at each step as:

For Jacobi, can show:

εt !
√∑

i,j

(ut
i,j − ui,j)2

εt ≤
(

cos
π

n + 1

)t

ε0
n→∞≈

(
1− π2

4
· t

n2

)
ε0

41

Numerical example illustrating slow
convergence

RHS True solution

5 steps of
another

technique

5 steps of Jacobi

42

“In conclusion…”

43

Summary: Parallelization process

44

Summary: Parallelization process

Lots of opportunities to use “math” to solve interesting problems

Four-step parallelization methodology

Partition: Identify fine-grained tasks

Determine communication pattern among tasks

Agglomerate fine-grained tasks into coarse-grained tasks to control
communication requirements/overheads

Map tasks to processors

45

