Η

Review: Motivation for and challenges of PNA

- Future applications will increasingly rely on numerical algorithms
- Ready or not, parallelism is here
- Algorithmic and hardware innovation go hand-in-hand
- Parallelization challenges:
 - Finding parallelism: Speedup(p) * (Serial fraction) ≤ 1
 - Parallel overheads: *e.g.*, communication, synchronization, redundant work
 - NUMA: "Mops" not flops
 - Load imbalance; numerical issues "at scale"

Why does hardware matter and how is it changing?

Prof. Richard Vuduc Georgia Institute of Technology CSE/CS 8803 PNA, Spring 2008 [L.02] Thursday, January 10, 2008

Sources for today's material

- CS 267 / CS 194 (Yelick @UCB)
- Burton Smith's talk at MSR Manycore Workshop (summer '07)
- Patterson/Culler @ UCB
- Yotov and Pingali (UT Austin)
- Kamil, et al. (UCB)

Current landscape of widely available parallel architectures

Manufacturer/Year	AMD/'05	Intel/'06	IBM/'04	Sun/'07
Processors/chip	2	2	2	8
Threads/Processor	1	2	2	16
Threads/chip	2	4	4	128

And at the same time,

- The STI Cell processor (PS3) has 8 cores
- The latest NVidia Graphics Processing Unit (GPU) has 128 cores
- · Intel has demonstrated an 80-core research chip

Why does hardware matter?

Hardware constrains concurrency

- Amdahl's law: Serial speed matters
- Communication costs: Latency and bandwidth
- Parallel overheads: Cost of synchronization

An idealized uniprocessor

- Address space: named bytes/words
- Basic operations: reading, writing, and arithmetic/logical
- Operations executed in program order
- Idealized cost: All operations have roughly same cost

A real uniprocessor

- Has registers and caches, and so access costs vary
- Instruction-level parallelism
 - Multiple "functional units" that run in parallel
 - Different instruction mixes and orders (schedules) have different costs
 - Pipelining
 - Superscalar, out-of-order execution, branch prediction, ...
- Data parallelism: SIMD units (e.g., SSE3)
- Compilers deal with this stuff in theory, but not always in practice

F

Uniprocessor parallelism: Pipelining

- *E.g.*, laundry: 90 min **latency**
- Wash = 30 mins
 - Dry = 40 mins
 - Fold = 20 mins
- 4 loads sequentially = 6 hours
- 4 loads pipelined = 3.5 hours
- **Bandwidth** = loads / hour

Η

Example: Alpha 21264 pipeline

H

ILP gain likely to be limited.

Uniprocessor parallelism: SIMD (Single Instruction, Multiple Data)

F

Η

Special instructions: Consequences and limits

- Improve instruction bandwidth
 - SIMD
 - Other example: Single-cycle **fused multiply-add (FMA)**, z = y + a*x
- In theory, compiler handles everything, but may not in practice
 - May require special flags
 - May require code reorganization to make parallelism "obvious"
 - May need to use "instrinsics" or assembly language
- Subtle difference: floating-point semantics

H

Recall: Memory hierarchies.

Cost of accessing data depends on where data lives.

Memory hierarchies reflect growing processor-memory speed gap.

Dealing with high memory latency

- Use caches as fast memory
 - Store data that will be reused many times: **temporal locality**
 - Save chunks of contiguous data: **spatial locality**
- Exploit fact that bandwidth improves faster than latency: **prefetch**
- Modern processors automate cache management
 - All loads cached automatically (LRU), and loaded in chunks (*cache line size*)
 - Typical to have a hardware prefetcher that detects simple patterns

Experiment to observe memory parameters.

Strided-stream through array; measure average access time.

(Saavedra-Barrera benchmark)

Η

Experimental effect of prefetching

Stanza benchmark (Kamil, et al., 2005)

```
while i < n do:
    for each L element stanza do:
        A[i] = a*X[i] + Y[i]
skip k elements</pre>
```


Putting it all together (preview): Dense matrix-matrix multiply

Η

Summary: Need to consider hardware to get high performance

- Two simple benchmarks show complex behavior
- Performance can be a sensitive function of machine
- Carefully exploiting architectural knowledge can lead to big gains in speed
- Whence simple guiding models?

Administrivia

Administrivia

- Oops, went over time last time (10:55a)
- **T-Square site "hosed" ; try again**
- Cluster accounts?
- Attendance at SIAM PP is optional (no write-up required), but I may be able to cover registration fees for a few people
- Office hours: T/Th 11a-12p
 - Physical": Klaus 1334
 - "Virtual": via AOL Instant Messenger at "VuducOfficeHours"

What drives multicore/manycore systems?

Fear of tunnel vision?

- "I think there is a world market for maybe five computers." T.J. Watson, chairman of IBM, 1943.
- "There is no reason for any individual to have a computer in their home." Ken Olson, president and founder of Digital Equipment Corporation, 1977.
- "640K [of memory] ought to be enough for anybody." Bill Gates, chairman of Microsoft,1981.
- "On several recent occasions, I have been asked whether parallel computing will soon be relegated to the trash heap reserved for promising technologies that never quite make it." Ken Kennedy, CRPC Directory, 1994

Hardware trends driving parallelism

- Architectural limits
 - ILP wall: Gains from ILP seem limited
 - Memory wall: Growing processor-memory gap
 - Power wall: Chips are too hot
- Lots of physical and cost limits

Latency, bandwidth, and concurrency

Little's Law (queuing theory): In any system that transports items from input to output without creating or destroying them,

 $latency \times bandwidth = concurrency$

H

Power density

Parallelism saves power

- Rules of thumb
 - Perf. ~ (# cores) * (frequency)
 - Power ~ (capacitance) * (voltage)²
 * (frequency)
 - Power ~ (# cores) * (freq)^{2.5}
- 2x cores, 1/2 freq ⇒ Same perf at ~ 1/3 power

Source: Mendelson, et al., Intel

Η

Data center operating costs: Electricity+power+cooling: 44%!

33

By 2010, servers will consume 3% of all U.S. electricity.

Up from 1.2% in 2005, and 0.6% in 2000.

Source: IDC

Power usage in data centers is increasing

- Moore's Law: flop/s ~ 3x every 2 years
- Power efficiency: flop/Joule ~ 2x every 2 years
- Between 2000 and 2006:
 - Computational efficiency increased by 27x
 - Power efficiency increased by 8x
 - At-the-plug power consumption increased by 27/8 ~ **3.4x** in 6 year period!
- By 2009, cost of electricity and cooling will exceed server cost
- Source: K. Brill, Up Time Institute (2006)

Limits on chip yield

- Moore's 2nd (Rock's) Law: fab costs increase
- Yield (usable chips) decreases
- How parallelism helps

P

- Using more smaller and simpler cores simplifies verification
- Can use partially working chips, e.g., PS3's Cell uses 7 of 8 cores

Limits due to the speed of light

- Sequential machine with speed
 P = 1 TFlop/s on a "chip" of radius r
- Speed of light $\mathbf{c} \sim 3*10^8$ m/s
- So, **r** < **c** / **P** ~ 0.3 mm
- 1 TB of memory on $\pi^* \mathbf{r}^2$ chip area ⇒ ~ 3.5 Angstrom² / bit

Current landscape of widely available parallel architectures

Manufacturer/Year	AMD/'05	Intel/'06	IBM/'04	Sun/'07
Processors/chip	2	2	2	8
Threads/Processor	1	2	2	16
Threads/chip	2	4	4	128

And at the same time,

- The STI Cell processor (PS3) has 8 cores
- The latest NVidia Graphics Processing Unit (GPU) has 128 cores
- · Intel has demonstrated an 80-core research chip