Review: Motivation for and
challenges of PNA

== Future applications will increasingly rely on numerical algorithms
== Ready or not, parallelism is here
== Algorithmic and hardware innovation go hand-in-hana

== Parallelization challenges:

Finding parallelism: Speedup(p) * (Serial fraction) < 1

Parallel overheads: e.g., communication, synchronization, redundant work

NUMA: “Mops” not flops

Load imbalance; numerical issues “at scale”
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Sources for today’s material

== CS 267 /CS 194 (Yelick @UCB)

== Burton Smith’s talk at MSR Manycore Workshop (summer ’07)
== Patterson/Culler @ UCB

== Yotov and Pingali (UT Austin)

== Kamil, et al. (UCB)




Current landscape of widely
avallable parallel architectures

Manufacturer/Year AMD/'05 Intel/’06 IBM/'04 Sun/'07
Processors/chip 2 2 2 8
Threads/Processor 1 2 2 16
Threads/chip 2 4 4 128

And at the same time,
* The STI Cell processor (PS3) has 8 cores

* Intel has demonstrated an 80-core research chip
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Why does hardware matter?




Hardware constrains concurrency

== Amdahl’s law: Serial speed matters
==  Communication costs: Latency and bandwidth

== Parallel overheads: Cost of synchronization




An Idealized uniprocessor

== Address space: named bytes/words
== Basic operations: reading, writing, and arithmetic/logical
== Operations executed in program order

== |dealized cost: All operations have roughly same cost




A real uniprocessor

== Has registers and caches, and so access costs vary

== Instruction-level parallelism

= Multiple “functional units” that run in parallel

== Different instruction mixes and orders (schedules) have different costs
== Pipelining

== Superscalar, out-of-order execution, branch prediction, ...

== Data parallelism: SIMD units (e.g., SSE3)

== Compilers deal with this stuff in theory, but not always in practice
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Uniprocessor parallelism: Pipelining

E.g., laundry: 90 min latency 6 PM 7 8 9
Wash = 30 mins | Time
Dry = 40 mins . 30' 40 "0 "30 40 30
Fold = 20 mins Z @ o[ &7
== 4 |oads sequentially = 6 hours . =7
4 loads pipelined = 3.5 hours 2 © o;[ .
. Bandwidth = loads / hour ; CA =\at: .
IS, =l
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ILP gain likely to be limited.
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Uniprocessor parallelism: SIMD
(Single Instruction, Multiple Data)




Special instructions:
Conseqguences and limits

== |mprove instruction bandwidth

SIMD

Other example: Single-cycle fused multiply-add (FMA), z =y + a*x

== |In theory, compiler handles everything, but may not in practice

May require special flags

May require code reorganization to make parallelism “obvious”

May need to use “instrinsics” or assembly language

== Subtle difference: floating-point semantics
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Recall: Memory hierarchies.

Cost of accessing data depends on where data lives.
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Dealing with high memory latency

== Use caches as fast memory
== Store data that will be reused many times: temporal locality

== Save chunks of contiguous data: spatial locality

== EXploit fact that bandwidth improves faster than latency: prefetch

== Modern processors automate cache management
== All loads cached automatically (LRU), and loaded in chunks (cache line size)

== [ypical to have a hardware prefetcher that detects simple patterns
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Experiment to observe memory
parameters.

T e vowr e -
. ] *

Strided-stream through array; measure average access time.
(Saavedra-Barrera benchmark)
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Experimental effect of prefetching

== Stanza benchmark (Kamil, et al., 2005)

while 1 < n do:
for each L element stanza do:
A[1] = a*X[1] + Y[1]
skip k elements

Y Y Y
1)doLtriads 2)skipk  3)do L triads
stanza  elements stanza
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Putting it all together (preview);
Dense matrix-matrix multiply
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Summary: Need to consider
hardware to get high performance

== WO simple benchmarks show complex behavior
== Performance can be a sensitive function of machine
== Carefully exploiting architectural knowledge can lead to big gains in speed

== \Whence simple guiding models?
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Administrivia




Administrivia

== Oops, went over time last time (10:55a)
== [-Square site “hosed” ; try again
== Cluster accounts?

== Attendance at SIAM PP is optional (no write-up required), but | may be able
to cover registration fees for a few people

== Office hours: T/Th 11a-12p
= “Physical”: Klaus 1334

= “Virtual”: via AOL Instant Messenger at “VuducOfficeHours”
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What drives multicore/manycore
systems”/




Fear of tunnel vision?

= “| think there is a world market for maybe five computers.” T.J.
Watson, chairman of IBM, 1943.

== “There is no reason for any individual to have a computer in their
home.” Ken Olson, president and founder of Digital Equipment Corporation, 1977.

= “640K [of memory] ought to be enough for anybody.” Bill Gates,
chairman of Microsoft,1981.

= “On several recent occasions, | have been asked whether parallel
computing will soon be relegated to the trash heap reserved for

promising technologies that never quite make it.” Ken Kennedy, CRPC
Directory, 1994
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Hardware trends driving parallelism

== Architectural limits
ILP wall: Gains from ILP seem limited
Memory wall: Growing processor-memory gap

Power wall: Chips are too hot

== Lots of physical and cost limits
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bandwidth = 2

concurrency = 6 >

latency = 3

L atency, bandwidth, and
concurrency

Little’s Law (queuing theory): In any system that transports items from input to
output without creating or destroying them,

latency X bandwidth = concurrency
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Parallelism saves power

== Rules of thumb

== Perf. ~ (# cores) * (frequency) |
‘OFrequency B Dual-Processor |

== Power ~ (capacitance) * (voltage)? 300
* (frequency) 5 250

2
O 200

== Power ~ (# cores) * (freq)>° L eo
>
© 100
Q
o m

3. 2x cores, 1/2 freq = Same perf 0 e e |
2 4 6 8 10
at ~ 1/3 power Relative Performance

Source: Mendelson, et al., Intel
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Data center operating costs:
Electricity+power+cooling: 44%!

Electricity + power & cooling equipment = 44%!  Source: apc.com (2003)
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By 2010, servers will consume 3%
of all U.S. electricity.

Up from 1.2% in 2005, and 0.6% in 2000.

Source: IDC
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Power usage in data centers is
INncreasing

== Moore’s Law: flop/s ~ 3x every 2 years
== Power efficiency: flop/Joule ~ 2x every 2 years

== Between 2000 and 2006:

Computational efficiency increased by 27x

Power efficiency increased by 8x

At-the-plug power consumption increased by 27/8 ~ 3.4x in 6 year period!
== By 2009, cost of electricity and cooling will exceed server cost

== Source: K. Brill, Up Time Institute (20006)
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Limits on chip yield

Cost of semiconductor factories in millions of 1995 dollars

== Moore’s 2nd (Rock’s) Law: fab 10,000 (ratio scale)
: /)

costs increase E /

== Yield (usable chips) decreases WM_ /,'/
000} °
== How parallelism helps 1uu; /
g s

== Using more smaller and simpler [ /
. . e i 7l
cores simplifies verification ¢ /
10 -~
== Can use partially working chips, Z

e.q., PS3’s Cell uses 7 of 8 cores

'66 '74 '82 '90 '98
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Limits due to the speed of light

== Sequential machine with speed
P =1 TFlop/s on a “chip” of
radius r

== Speed of light ¢ ~ 3*108 m/s

z= SO, r<e/P~0.3mm

== 1 TB of memory on 1*r? chip area
= ~ 3.5 Angstrom? / bit
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Current landscape of widely
avallable parallel architectures

Manufacturer/Year AMD/'05 Intel/’06 IBM/'04 Sun/'07
Processors/chip 2 2 2 8
Threads/Processor 1 2 2 16
Threads/chip 2 4 4 128

And at the same time,
* The STI Cell processor (PS3) has 8 cores

* Intel has demonstrated an 80-core research chip
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