
Review: Motivation for and 
challenges of PNA

Future applications will increasingly rely on numerical algorithms

Ready or not, parallelism is here

Algorithmic and hardware innovation go hand-in-hand

Parallelization challenges:

Finding parallelism: Speedup(p) * (Serial fraction) ≤ 1

Parallel overheads: e.g., communication, synchronization, redundant work

NUMA: “Mops” not flops

Load imbalance; numerical issues “at scale”
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Why does hardware matter and 
how is it changing?
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Sources for today’s material

CS 267 / CS 194 (Yelick @UCB)

Burton Smith’s talk at MSR Manycore Workshop (summer ’07)

Patterson/Culler @ UCB

Yotov and Pingali (UT Austin)

Kamil, et al. (UCB)
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Current landscape of widely 
available parallel architectures
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Source: Dubey, et al., of Intel (2005)
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Why does hardware matter?
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Hardware constrains concurrency

Amdahl’s law: Serial speed matters

Communication costs: Latency and bandwidth

Parallel overheads: Cost of synchronization
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An idealized uniprocessor	

Address space: named bytes/words

Basic operations: reading, writing, and arithmetic/logical

Operations executed in program order

Idealized cost: All operations have roughly same cost
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A real uniprocessor

Has registers and caches, and so access costs vary

Instruction-level parallelism

Multiple “functional units” that run in parallel

Different instruction mixes and orders (schedules) have different costs

Pipelining

Superscalar, out-of-order execution, branch prediction, ...

Data parallelism: SIMD units (e.g., SSE3)

Compilers deal with this stuff in theory, but not always in practice
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Uniprocessor parallelism: Pipelining
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Uniprocessor parallelism: Pipelining

E.g., laundry: 90 min latency

Wash = 30 mins

Dry = 40 mins

Fold = 20 mins

4 loads sequentially = 6 hours

4 loads pipelined = 3.5 hours

Bandwidth = loads / hour
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Example: Alpha 21264 pipeline
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ILP gain likely to be limited.

Integer: 6-12

Floating-point: 8-45
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Uniprocessor parallelism: SIMD
(Single Instruction, Multiple Data)
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Special instructions:
Consequences and limits

Improve instruction bandwidth

SIMD

Other example: Single-cycle fused multiply-add (FMA), z = y + a*x

In theory, compiler handles everything, but may not in practice

May require special flags

May require code reorganization to make parallelism “obvious”

May need to use “instrinsics” or assembly language

Subtle difference: floating-point semantics
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Recall: Memory hierarchies.
Cost of accessing data depends on where data lives.
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Memory hierarchies reflect growing 
processor-memory speed gap.
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Dealing with high memory latency

Use caches as fast memory

Store data that will be reused many times: temporal locality

Save chunks of contiguous data: spatial locality

Exploit fact that bandwidth improves faster than latency: prefetch

Modern processors automate cache management

All loads cached automatically (LRU), and loaded in chunks (cache line size)

Typical to have a hardware prefetcher that detects simple patterns
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s

Experiment to observe memory 
parameters.

Strided-stream through array; measure average access time.
(Saavedra-Barrera benchmark)
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Experimental effect of prefetching

Stanza benchmark (Kamil, et al., 2005)

while i < n do:
    for each L element stanza do:
        A[i] = a*X[i] + Y[i]
skip k elements

1) do L triads 3) do L triads2) skip k 
elements

. . .. . .

stanzastanza
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k=2048
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Putting it all together (preview):
Dense matrix-matrix multiply
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Theoretically I/O optimal

Assist the compiler a little

Full, careful tuning

(Source: Yotov, et al., 2006)
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Summary: Need to consider 
hardware to get high performance

Two simple benchmarks show complex behavior

Performance can be a sensitive function of machine

Carefully exploiting architectural knowledge can lead to big gains in speed

Whence simple guiding models?
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Administrivia
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Administrivia	

Oops, went over time last time (10:55a)

T-Square site “hosed” ; try again

Cluster accounts?

Attendance at SIAM PP is optional (no write-up required), but I may be able 
to cover registration fees for a few people

Office hours: T/Th 11a-12p

“Physical”: Klaus 1334

“Virtual”: via AOL Instant Messenger at “VuducOfficeHours”
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What drives multicore/manycore 
systems?
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Fear of tunnel vision?

“I think there is a world market for maybe five computers.”  T.J. 
Watson, chairman of IBM, 1943.

“There is no reason for any individual to have a computer in their 
home.”  Ken Olson, president and founder of Digital Equipment Corporation, 1977.

“640K [of memory] ought to be enough for anybody.” Bill Gates, 
chairman of Microsoft,1981.

“On several recent occasions, I have been asked whether parallel 
computing will soon be relegated to the trash heap reserved for 
promising technologies that never quite make it.”  Ken Kennedy, CRPC 
Directory, 1994
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Hardware trends driving parallelism

Architectural limits

ILP wall: Gains from ILP seem limited

Memory wall: Growing processor-memory gap

Power wall: Chips are too hot

Lots of physical and cost limits
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Latency, bandwidth, and 
concurrency
Little’s Law (queuing theory): In any system that transports items from input to 
output without creating or destroying them,

latency × bandwidth = concurrency
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Power density
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Parallelism saves power

Rules of thumb

Perf. ~ (# cores) * (frequency)

Power ~ (capacitance) * (voltage)2 
* (frequency)

Power ~ (# cores) * (freq)2.5

2x cores, 1/2 freq ⇒ Same perf 

at ~ 1/3 power

Source: Mendelson, et al., Intel
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Data center operating costs: 
Electricity+power+cooling: 44%!
Electricity + power & cooling equipment = 44%!    Source: apc.com (2003)
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By 2010, servers will consume 3% 
of all U.S. electricity.
Up from 1.2% in 2005, and 0.6% in 2000.

Source: IDC
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Power usage in data centers is 
increasing

Moore’s Law: flop/s ~ 3x every 2 years

Power efficiency: flop/Joule ~ 2x every 2 years

Between 2000 and 2006:

Computational efficiency increased by 27x

Power efficiency increased by 8x

At-the-plug power consumption increased by 27/8 ~ 3.4x in 6 year period!

By 2009, cost of electricity and cooling will exceed server cost

Source: K. Brill, Up Time Institute (2006)
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Limits on chip yield

Moore’s 2nd (Rock’s) Law: fab 
costs increase

Yield (usable chips) decreases

How parallelism helps

Using more smaller and simpler 
cores simplifies verification

Can use partially working chips, 
e.g., PS3’s Cell uses 7 of 8 cores
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Limits due to the speed of light

Sequential machine with speed  
P = 1 TFlop/s on a “chip” of 
radius r

Speed of light c ~ 3*108 m/s

So, r < c / P ~ 0.3 mm

1 TB of memory on π*r2 chip area 
⇒ ~ 3.5 Angstrom2 / bit

r
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Current landscape of widely 
available parallel architectures
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