
Review: Motivation for and 
challenges of PNA

Future applications will increasingly rely on numerical algorithms

Ready or not, parallelism is here

Algorithmic and hardware innovation go hand-in-hand

Parallelization challenges:

Finding parallelism: Speedup(p) * (Serial fraction) ≤ 1

Parallel overheads: e.g., communication, synchronization, redundant work

NUMA: “Mops” not flops

Load imbalance; numerical issues “at scale”

1



Why does hardware matter and 
how is it changing?

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA, Spring 2008

[L.02] Thursday, January 10, 2008

2



Sources for today’s material

CS 267 / CS 194 (Yelick @UCB)

Burton Smith’s talk at MSR Manycore Workshop (summer ’07)

Patterson/Culler @ UCB

Yotov and Pingali (UT Austin)

Kamil, et al. (UCB)

3



Current landscape of widely 
available parallel architectures

4



Source: Dubey, et al., of Intel (2005)

5



Why does hardware matter?

6



Hardware constrains concurrency

Amdahl’s law: Serial speed matters

Communication costs: Latency and bandwidth

Parallel overheads: Cost of synchronization

7



An idealized uniprocessor	

Address space: named bytes/words

Basic operations: reading, writing, and arithmetic/logical

Operations executed in program order

Idealized cost: All operations have roughly same cost

8



A real uniprocessor

Has registers and caches, and so access costs vary

Instruction-level parallelism

Multiple “functional units” that run in parallel

Different instruction mixes and orders (schedules) have different costs

Pipelining

Superscalar, out-of-order execution, branch prediction, ...

Data parallelism: SIMD units (e.g., SSE3)

Compilers deal with this stuff in theory, but not always in practice

9



A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Uniprocessor parallelism: Pipelining

10



A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Uniprocessor parallelism: Pipelining

E.g., laundry: 90 min latency

Wash = 30 mins

Dry = 40 mins

Fold = 20 mins

4 loads sequentially = 6 hours

4 loads pipelined = 3.5 hours

Bandwidth = loads / hour

10



Example: Alpha 21264 pipeline

11



P r og r am

In
st

ru
ct

io
n 

is
su

es
 

pe
r 

cy
cl

e

0

10

20

30

40

50

60

gcc expresso l i fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5 4
6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

ILP gain likely to be limited.

Integer: 6-12

Floating-point: 8-45

12



++
XX

YY

X + YX + Y

++
x3x3 x2x2 x1x1 x0x0

y3y3 y2y2 y1y1 y0y0

x3+y3x3+y3 x2+y2x2+y2 x1+y1x1+y1 x0+y0x0+y0

XX

YY

X + YX + Y

Uniprocessor parallelism: SIMD
(Single Instruction, Multiple Data)

13



Special instructions:
Consequences and limits

Improve instruction bandwidth

SIMD

Other example: Single-cycle fused multiply-add (FMA), z = y + a*x

In theory, compiler handles everything, but may not in practice

May require special flags

May require code reorganization to make parallelism “obvious”

May need to use “instrinsics” or assembly language

Subtle difference: floating-point semantics

14



on-chip
cacheregisters

datapath

control

processor

Second
level
cache
(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

TBGBMBKBBSize

10sec10ms100ns10ns1nsCost

Recall: Memory hierarchies.
Cost of accessing data depends on where data lives.

15



Memory hierarchies reflect growing 
processor-memory speed gap.

16



Dealing with high memory latency

Use caches as fast memory

Store data that will be reused many times: temporal locality

Save chunks of contiguous data: spatial locality

Exploit fact that bandwidth improves faster than latency: prefetch

Modern processors automate cache management

All loads cached automatically (LRU), and loaded in chunks (cache line size)

Typical to have a hardware prefetcher that detects simple patterns

17



s

Experiment to observe memory 
parameters.

Strided-stream through array; measure average access time.
(Saavedra-Barrera benchmark)

18



19



Experimental effect of prefetching

Stanza benchmark (Kamil, et al., 2005)

while i < n do:
    for each L element stanza do:
        A[i] = a*X[i] + Y[i]
skip k elements

1) do L triads 3) do L triads2) skip k 
elements

. . .. . .

stanzastanza

20



k=2048

21



Putting it all together (preview):
Dense matrix-matrix multiply

22



Theoretically I/O optimal

Assist the compiler a little

Full, careful tuning

(Source: Yotov, et al., 2006)

23



Summary: Need to consider 
hardware to get high performance

Two simple benchmarks show complex behavior

Performance can be a sensitive function of machine

Carefully exploiting architectural knowledge can lead to big gains in speed

Whence simple guiding models?

24



Administrivia

25



Administrivia	

Oops, went over time last time (10:55a)

T-Square site “hosed” ; try again

Cluster accounts?

Attendance at SIAM PP is optional (no write-up required), but I may be able 
to cover registration fees for a few people

Office hours: T/Th 11a-12p

“Physical”: Klaus 1334

“Virtual”: via AOL Instant Messenger at “VuducOfficeHours”

26



What drives multicore/manycore 
systems?

27



Fear of tunnel vision?

“I think there is a world market for maybe five computers.”  T.J. 
Watson, chairman of IBM, 1943.

“There is no reason for any individual to have a computer in their 
home.”  Ken Olson, president and founder of Digital Equipment Corporation, 1977.

“640K [of memory] ought to be enough for anybody.” Bill Gates, 
chairman of Microsoft,1981.

“On several recent occasions, I have been asked whether parallel 
computing will soon be relegated to the trash heap reserved for 
promising technologies that never quite make it.”  Ken Kennedy, CRPC 
Directory, 1994

28



Hardware trends driving parallelism

Architectural limits

ILP wall: Gains from ILP seem limited

Memory wall: Growing processor-memory gap

Power wall: Chips are too hot

Lots of physical and cost limits

29



Latency, bandwidth, and 
concurrency
Little’s Law (queuing theory): In any system that transports items from input to 
output without creating or destroying them,

latency × bandwidth = concurrency

30



Power density

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w

er
 D

en
si

ty
 (W

/c
m

2 )

Hot Plate

Nuclear
Reacto
r

Rocket
Nozzle

Sun’s
Surface

Source: Patrick 
Gelsinger, Intel®

31



Parallelism saves power

Rules of thumb

Perf. ~ (# cores) * (frequency)

Power ~ (capacitance) * (voltage)2 
* (frequency)

Power ~ (# cores) * (freq)2.5

2x cores, 1/2 freq ⇒ Same perf 

at ~ 1/3 power

Source: Mendelson, et al., Intel

32



Data center operating costs: 
Electricity+power+cooling: 44%!
Electricity + power & cooling equipment = 44%!    Source: apc.com (2003)

33



By 2010, servers will consume 3% 
of all U.S. electricity.
Up from 1.2% in 2005, and 0.6% in 2000.

Source: IDC

34



Power usage in data centers is 
increasing

Moore’s Law: flop/s ~ 3x every 2 years

Power efficiency: flop/Joule ~ 2x every 2 years

Between 2000 and 2006:

Computational efficiency increased by 27x

Power efficiency increased by 8x

At-the-plug power consumption increased by 27/8 ~ 3.4x in 6 year period!

By 2009, cost of electricity and cooling will exceed server cost

Source: K. Brill, Up Time Institute (2006)

35



Limits on chip yield

Moore’s 2nd (Rock’s) Law: fab 
costs increase

Yield (usable chips) decreases

How parallelism helps

Using more smaller and simpler 
cores simplifies verification

Can use partially working chips, 
e.g., PS3’s Cell uses 7 of 8 cores

36



Limits due to the speed of light

Sequential machine with speed  
P = 1 TFlop/s on a “chip” of 
radius r

Speed of light c ~ 3*108 m/s

So, r < c / P ~ 0.3 mm

1 TB of memory on π*r2 chip area 
⇒ ~ 3.5 Angstrom2 / bit

r

37



Current landscape of widely 
available parallel architectures

38


