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Sources for today’s material

== CS 267 (Yelick @UCB)
== David Keyes
== Williams, et al. SC’'07 (UCB)

== Higham, Accuracy and Stability of Numerical Algorithms




Attention span

“In conclusion...”

5 min 10 min 50 min

L ecture; Patterson’s Law of
Attention Span

D. Patterson (UC Berkeley)



Why study PNA today”




Why study PNA today”

== Current and future apps are numerical, data-intensive
== Parallel hardware widely available
==  Computing industry betting its future on it! (next lecture)
== Need to program for parallelism and locality explicitly
== Algorithmic costs changed: “mops” not flops; “accuracy”

== \Winners” unclear

== Interaction of applications, algorithms, and systems
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Application example:
Google’s PageRank




Google’s web search procedure

== Step 1: Rank all web pages, given the web
Update every once in a while

= Step 2: Return list of matching pages in order by rank, given query

At “query-time”




Google’s web search procedure

== Step 1: Rank all web pages, given the web

Update every once in a while
= Step 2: Return list of matching pages in order by rank, given query

At “query-time”

== Compute ranking using a “random surfer” model
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Start on page /.

A “random surfer” model.



Jump to ; with some probabllity.

A “random surfer” model.



Repeat.

A “random surfer” model.

TETTTYY =
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Where will the surfer end up?

A “random surfer” model.
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Probability of being on page i at time t.
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Transition probability (=0 if no link).
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Te11(J) = Zflft(i) - W (i,7)

Probability of being on page j at time t+7, with transition probability W(i,)).
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Repeat matrix-vector multiply until convergence.
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Tt+1 = WT‘xt:(WT)z'xt—lz”'

“Power method” for computing the principal eigenvector of W'.
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Applications and architectures




Units of measurement

== Flop”: Floating-point operation

== “Flop/s”: Flops per second

= “Bytes”: Size of data (double-precision float is 8 bytes)
== Joday’s peak speeds

== Single processor core ~5 Gflop/s

== STI|-Cell (8-core) ~15 Gflop/s

== NVIDIA Tesla (128-core) ~500 Gflop/s

== Note: Achievable speeds often < 10% of peak
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Parallelism and algorithmic
iInnovation outpace Moore’s Law
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10 - “Moore’s Law” for Combustion Simulations
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Intel, on their hardware strateqy:

“We are dedicating all of our future
oroduct development to multicore

designs. ... This is a sea change Iin
computing.” (2005)

Paul S. Otellini
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Source: Hennessey and Patterson, CA:AQA (4th edition), 2006
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What's so hard about parallel
programming?




On p processors with {fraction s serial work:

Time(1
Speedup(p) = TimeEp§
g 1
= el
p
1
S Lo
S

FINnding enougn parallelism.

Amdahl’s Law: Maximum speedup limited by sequential part.
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Parallelism incurs overheads.

== Examples of overheads:

Cost of starting a thread or process

Cost of communicating shared data

Cost of synchronization

Cost of extra (redundant) computation
== Costs may be milliseconds, which is millions of flops

== [radeoff: Granularity of task vs. amount of parallelism
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processor

control

datapath

on-chip
cache
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Second
level
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Main
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(Disk)

Tertiary
storage

(Disk/Tape)

Memory hierarchies:

Non-uniform memory access cost.

Better algorithms and implementations exploit locality.
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Conventional

Proc Proc
Cache Cache
L2 Cache L2 Cache
SRS =
L3 Cache L3 Cache

Storage =
) [QC
Hierarchy Cache
L2 Cache
L3 Cache
Memory

NUMA In the parallel setting.

Processors should minimize communication (remote data access).
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i «~ A'S

y = AA" x
y <« At

For large A, “reads” A twice.

NUMA = Seek algorithmic reuse.



Reorganize to Improve reuse.
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Algorithms and implementations
must guard against load imlbalance.

== Load imbalance: Subset of processors becomes idle
Insufficient parallelism

Unequally sized tasks

== Sources of imbalance
Local adaptation (adaptive mesh refinement)
Tree-structured computations

Fundamentally unstructured problem
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L arge-scale parallelism may raise
numerical accuracy ISsues.

Finite-ness of precision matters

@
more for larger problems
lll-conditioning o(x)
Round-off
Example: Compute variance of
data set using “two-pass” Let o(x)
algorithm (right) and €
In single prec. (¢ ~ 107), all digits then.
lost when n ~ 10 million
6(x) —o(x)

computed o(x),

machine precision.

(n+3)e+ O (%)
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Course organization
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Student make-up of course?

== Mostly CS students, so will emphasize algorithm-to-machine mapping more
than new-algorithm-development

== Work in teams of two and three; be interdisciplinary where possible!
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Workload and grading

== Grading

= 10% - Class participation and “scribe notes”

= 24% - Two homework/programming assignments

== 6% - Attend SIAM PP and write-up what you learned

== 60% - Course project

== Al homework during first 8 weeks; last 8 weeks for your project!
== Collaboration encouraged, but don’t “cheat.”

== NO textbook, but will supplement lectures with readings
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Schedule of topics
(approximate)

== Week 1: Overview and hardware trends

= Week 2: Sources of parallelism & locality; performance modeling
== Week 3: Basics of parallel programming [HW 1]

== Week 4: Structured grids; dense linear algebra

== Week 5-6: Dense and sparse linear algebra

== Week 7: FFT ; floating-point issues

== Week 8: Single-processor performance tuning [HW 2; project proposals]

== (Quest lecture by Hyesoon Kim on General-purpose GPU programming
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Schedule of topics (2)

== Week 9: Automatic performance tuning (autotuning)

== Week 10: Load balancing; SIAM PP

== Week 11-12: Particle methods; graph partitioning [Project checkpoint]
== Week 13: PDEs

== Week 14: Event-driven methods

== Week 15: Volunteer computing ; parallel languages research

== \Week 106: Project presentations

== Project write-up due on “final exam” day
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Homework #0:
Complete course survey

== | will post all materials at GT T-Square site for “CSE-8803-PNA”

== Go to: http://t-square.gatech.edu
== Note: Cross-listed with CS-8803-PNA / CS-4803-PNA, but ignore these

== Fill out survey questions under “Poll” tab

== \When you “submit” the assignment, briefly describe what you hope to get out
of this course

== Also: Use “Forum” to introduce yourselves
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“In conclusion...”
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Need for locality and parallelism
drives new algorithms.

Example: y = A%*x
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Need for locality and parallelism
drives new algorithms.

Example: y = A%*x



Need for locality and parallelism
drives new algorithms.

Example: y = A*x. A new kernel implies a new algorithm... ?



Some questions raised by this
example.

== [his algorithm has locality, but what about parallelism?

What is the relationship between locality and parallelism??

== The “inner loop” of a solver based on this kernel is now A¥*x, not just A*x.
How does this change the “outer loops?”
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Technical challenges of PNA

== Precision, memory, and processing are finite resources

== Curse of dimensionality: 3D space + time eats up Moore’s Law
== Hardware changes quickly

== Huge amount of relfevant domain-knowledge exists: Collaboratel!

== Parallel programming is hard
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