
Parallel numerical algorithms:
Course overview

Prof. Richard Vuduc

Georgia Institute of Technology

CSE/CS 8803 PNA, Spring 2008

[L.01] Tuesday, January 8, 2008

1

Sources for today’s material

CS 267 (Yelick @UCB)

David Keyes

Williams, et al. SC’07 (UCB)

Higham, Accuracy and Stability of Numerical Algorithms

2

Lecture: Patterson’s Law of
Attention Span
D. Patterson (UC Berkeley)

Attention span

5 min 10 min 50 min

“In conclusion…”

3

Why study PNA today?

4

Why study PNA today?

Current and future apps are numerical, data-intensive

Parallel hardware widely available

Computing industry betting its future on it! (next lecture)

Need to program for parallelism and locality explicitly

Algorithmic costs changed: “mops” not flops; “accuracy”

“Winners” unclear

Interaction of applications, algorithms, and systems

4

5

5

Application example:
Google’s PageRank

6

Google’s web search procedure

Step 1: Rank all web pages, given the web

Update every once in a while

Step 2: Return list of matching pages in order by rank, given query

At “query-time”

7

Google’s web search procedure

Step 1: Rank all web pages, given the web

Update every once in a while

Step 2: Return list of matching pages in order by rank, given query

At “query-time”

Compute ranking using a “random surfer” model

7

Start on page i.
A “random surfer” model.

i

8

Jump to j with some probability.
A “random surfer” model.

i

j

9

Repeat.
A “random surfer” model.

i

j

k

10

Where will the surfer end up?
A “random surfer” model.

i

j

k

11

Probability of being on page i at time t.

i

xt(i)

12

Transition probability (=0 if no link).

i

j

W (i, j)

13

Probability of being on page j at time t+1, with transition probability W(i,j).

i

j

i

i

xt+1(j) =
n∑

i=1

xt(i) · W (i, j)

14

Repeat matrix-vector multiply until convergence.

i

j

i

i

xt+1 = WT · xt

15

“Power method” for computing the principal eigenvector of WT.

i

j

i

i

xt+1 = WT · xt = (WT)2 · xt−1 = · · ·
= (WT)t+1 · x0

16

Applications and architectures

17

Units of measurement

“Flop”: Floating-point operation

“Flop/s”: Flops per second

“Bytes”: Size of data (double-precision float is 8 bytes)

Today’s peak speeds

Single processor core ~5 Gflop/s

STI-Cell (8-core) ~15 Gflop/s

NVIDIA Tesla (128-core) ~500 Gflop/s

Note: Achievable speeds often < 10% of peak

18

Algorithmic efficiency rivals
architectural advances in scale.
If n=64, flops reduced by ~16 M [6 mo. to 1 sec.]; Source: Keyes (2004)

Year Method Reference Storage Flops

1947

1950

1971

1984

Gaussian
Elimination

Von Neumann
& Goldstine

n5 n7

Optimal SOR Young n3 n4 log n

Conj. grad. Reid n3 n3.5 log n

Full multigrid Brandt n3 n3

∇2u=f 64

64 64

19

year

relative
speedup

Algorithmic and architectural
improvements go hand-in-hand.

20

Parallelism and algorithmic
innovation outpace Moore’s Law

1

10

100

1000

10000

100000

1000000

1988 1990 1993 1995 1997 1999 2001 2003 2005 2007

G
flo

p
/s

Year

Gordon Bell Winners

Moore’s Law Projection

105x improvement in ~20 years

100x

21

Source: SCaLeS report 2 (2004), via D. Keyes. http://pnl.gov/scales

22

http://pnl.gov/scales
http://pnl.gov/scales

0

1

2

3

4

5

6

7

8

9

10

1980 1990 2000 2010

Calendar Year

Lo
g

Ef
fe

ct
iv

e
G

ig
aF

LO
PS

High Order

Autocode

ARK integrator
complex chem Higher

order
AMR

NERSC
RS/6000

NERSC
SP3

Cray 2

AMR

Low Mach

“Moore’s Law” for Combustion Simulations

Source: SCaLeS report 2 (2004), via D. Keyes. http://pnl.gov/scales

23

http://pnl.gov/scales
http://pnl.gov/scales

Intel, on their hardware strategy:

“We are dedicating all of our future
product development to multicore
designs. … This is a sea change in
computing.” (2005)

24

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor performance not
keeping up with Moore’s law.

3X

2x every
5 years?

Source: Hennessey and Patterson, CA:AQA (4th edition), 2006

25

What’s so hard about parallel
programming?

26

On p processors with fraction s serial work:

Speedup(p) =
Time(1)
Time(p)

≤ 1
s + 1−s

p

≤ 1
s

Finding enough parallelism.
Amdahl’s Law: Maximum speedup limited by sequential part.

27

Parallelism incurs overheads.

Examples of overheads:

Cost of starting a thread or process

Cost of communicating shared data

Cost of synchronization

Cost of extra (redundant) computation

Costs may be milliseconds, which is millions of flops

Tradeoff: Granularity of task vs. amount of parallelism

28

on-chip
cacheregisters

datapath

control

processor

Second
level
cache
(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

TBGBMBKBBSize

10sec10ms100ns10ns1nsCost

Memory hierarchies:
Non-uniform memory access cost.
Better algorithms and implementations exploit locality.

29

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional
Storage
Hierarchy

Proc
Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

potential
interconnects

NUMA in the parallel setting.
Processors should minimize communication (remote data access).

30

+NUMA/Affinity

Naïve Pthreads

Naïve Single Thread

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
e
n
se

P
ro
te
in

F
E
M
-S
p
h
r

F
E
M
-C
a
n
t

T
u
n
n
e
l

F
E
M
-H
a
r

Q
C
D

F
E
M
-S
h
ip

E
co
n
o
m

E
p
id
e
m

F
E
M
-A
cc
e
l

C
ir
cu
it

W
e
b
b
a
se L
P

M
e
d
ia
n

G
F
lo
p
/
s

Opteron

DDR2 DRAM

Opteron

DDR2 DRAM

Opteron

DDR2 DRAM

Opteron

DDR2 DRAM

Opteron

DDR2 DRAM

Opteron

DDR2 DRAM

Single Thread

Multiple Threads,
One memory controller

Multiple Threads,
Both memory controllers

NUMA ⇒ Explicit

data placement.

2x

Sparse matrix-vector multiply
on 2x2-core AMD Opteron.

31

y = AAT x
t ← AT x

y ← At

NUMA ⇒ Seek algorithmic reuse.

For large A, “reads” A twice.

32

AAT x = (a1 · · · an)




aT
1
...

aT
n



 x =
n∑

i=1

ai

(
aT

i x
)

Reorganize to improve reuse.

33

Algorithms and implementations
must guard against load imbalance.

Load imbalance: Subset of processors becomes idle

Insufficient parallelism

Unequally sized tasks

Sources of imbalance

Local adaptation (adaptive mesh refinement)

Tree-structured computations

Fundamentally unstructured problem

34

x̄ =
1
n

n∑

i=1

xi

σ(x) =
1

n− 1

n∑

i=1

(xi − x̄)2

Let σ̂(x) = computed σ(x),
and ε = machine precision.
then:

σ̂(x)− σ(x)
σ(x)

≤ (n + 3)ε + O
(
ε2

)

Large-scale parallelism may raise
numerical accuracy issues.

Finite-ness of precision matters
more for larger problems

Ill-conditioning

Round-off

Example: Compute variance of
data set using “two-pass”
algorithm (right)

In single prec. (ε ~ 10-7), all digits
lost when n ~ 10 million

35

Course organization

36

Student make-up of course?

Mostly CS students, so will emphasize algorithm-to-machine mapping more
than new-algorithm-development

Work in teams of two and three; be interdisciplinary where possible!

37

Workload and grading

Grading

10% - Class participation and “scribe notes”

24% - Two homework/programming assignments

6% - Attend SIAM PP and write-up what you learned

60% - Course project

All homework during first 8 weeks; last 8 weeks for your project!

Collaboration encouraged, but don’t “cheat.”

No textbook, but will supplement lectures with readings

38

Schedule of topics
(approximate)

Week 1: Overview and hardware trends

Week 2: Sources of parallelism & locality; performance modeling

Week 3: Basics of parallel programming [HW 1]

Week 4: Structured grids; dense linear algebra

Week 5-6: Dense and sparse linear algebra

Week 7: FFT ; floating-point issues

Week 8: Single-processor performance tuning [HW 2; project proposals]

Guest lecture by Hyesoon Kim on General-purpose GPU programming

39

Schedule of topics (2)

Week 9: Automatic performance tuning (autotuning)

Week 10: Load balancing; SIAM PP

Week 11-12: Particle methods; graph partitioning [Project checkpoint]

Week 13: PDEs

Week 14: Event-driven methods

Week 15: Volunteer computing ; parallel languages research

Week 16: Project presentations

Project write-up due on “final exam” day

40

Homework #0:
Complete course survey

I will post all materials at GT T-Square site for “CSE-8803-PNA”

Go to: http://t-square.gatech.edu

Note: Cross-listed with CS-8803-PNA / CS-4803-PNA, but ignore these

Fill out survey questions under “Poll” tab

When you “submit” the assignment, briefly describe what you hope to get out
of this course

Also: Use “Forum” to introduce yourselves

41

http://t-square.gatech.edu
http://t-square.gatech.edu

“In conclusion…”

42

y1

y2

y3

y4

y5

t1

t2

t3

t4

t5

x1

x2

x3

x4

x5

a11 a11

a12 a12

Need for locality and parallelism
drives new algorithms.
Example: y = A2*x

43

y1

y2

y3

y4

y5

t1

t2

t3

t4

t5

x1

x2

x3

x4

x5

a11 a11

a12 a12

Need for locality and parallelism
drives new algorithms.
Example: y = A2*x

44

y1

y2

y3

y4

y5

t1

t2

t3

t4

t5

x1

x2

x3

x4

x5

Need for locality and parallelism
drives new algorithms.
Example: y = A2*x. A new kernel implies a new algorithm… ?

45

Some questions raised by this
example.

This algorithm has locality, but what about parallelism?

What is the relationship between locality and parallelism?

The “inner loop” of a solver based on this kernel is now Ak*x, not just A*x.
How does this change the “outer loops?”

46

Technical challenges of PNA

Precision, memory, and processing are finite resources

Curse of dimensionality: 3D space + time eats up Moore’s Law

Hardware changes quickly

Huge amount of relevant domain-knowledge exists: Collaborate!

Parallel programming is hard

47

