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Abstract

The excessive complexity of both machine architectures

and applications have made it difficult for compilers to stat-

ically model and predict application behavior. This observa-

tion motivates the recent interest in performance tuning using

empirical techniques. We present a new embedded scripting

language, POET (Parameterized Optimization for Empirical

Tuning), for parameterizing complex code transformations

so that they can be empirically tuned. The POET language

aims to significantly improve the generality, flexibility, and

efficiency of existing empirical tuning systems. We have used

the language to parameterize and to empirically tune three

loop optimizations—interchange, blocking, and unrolling—

for two linear algebra kernels. We show experimentally

that the time required to tune these optimizations using

POET, which does not require any program analysis, is

significantly shorter than that when using a full compiler-

based source-code optimizer which performs sophisticated

program analysis and optimizations.

I. Introduction

Over the past 30 years, both modern computer archi-

tectures and software applications have become extremely

complex. A modern computer typically includes one or more

core microprocessors, multiple levels of cache, a virtual

memory system, and an interconnection network; while a

non-trivial application often includes millions of lines of code

distributed in thousands of different files. Such complexity

exceeds the capability of typical compilers to statically model

and predict application behavior. As a result, an application’s

performance has frequently suffered relative to its potential.

Recent research has demonstrated that empirical tuning of

application performance can significantly improve the effec-

tiveness of compiler optimizations [23], [16], [12], [13], [18],

[9], [27]. In these approaches, sensitive restructuring trans-

formations are parameterized and dynamically re-configured
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<code Function pars=(head,decl,body)>

@head@

{

@decl@

@body@

}

</code>

<code Nest pars=(loop, body) >

@loop@ {

@body@

}

</code>

<code Sequence pars=(s1,s2) >

@s1@

@s2@

</code>

<code Loop pars=(i,start,stop,step) >

@init=(if start=="" then "" else (i "=" start ));

test=(if stop=="" then "" else (i "<=" stop ));

incr=(if step=="" then "" else (i "+=" step ));

@for (@init@; @test@; @incr@)

</code>

<xform Unroll pars=(input,uloop) tune=(ur=16)>

if (!(input : Nest#(loop,body))) then (

if (input : Function#(head,decl,body)) then

Function#(head,decl,Unroll#(body,uloop))

else if (input : Sequence#(s1,s2)) then

Sequence#(Unroll#(s1,uloop),Unroll#(s2,uloop))

else input

)

else if (loop != uloop) then

Nest#(loop, Unroll#(body,uloop))

else if (!ur || ur == 1) then input

else (

loop : Loop#(ivar,start,stop,step);

dup = (body DUPLICATE#(_, ur-1,(ivar "+=1;" ENDL body)));

Sequence#(Nest#(Loop#(ivar,start,(stop "-" ur-1),step),dup),

Nest#(Loop#(ivar,"",stop,step),body))

)

</xform>

Fig. 1. POET definition of loop unrolling

according to performance feedback of the optimized code.

Previous research has used both library- and compiler-based

approaches, where a library generator or an optimizing

compiler is dynamically reconfigured to make different opti-

mization decisions. In the library-based approach, the library

code generator is manually written by program developers

based on their domain-specific knowledge about both the

applications and the machines to which their libraries might

be ported. A number of such libraries have been shown to

be highly successful in extracting portable high performance



include opt.poet

<define loopJ Loop#("j",0,"n",1)>

<define loopI Loop#("i",0,"m",1)>

<define loopK Loop#("k",0,"l",1)>

<define mmStmt "c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k];">

<define nest1 Nest#(loopK,mmStmt)>

<define nest2 Nest#(loopI,nest1)>

<define nest3 Nest#(loopJ,nest2)>

<define mmHead "void dgemm(int m, int n, int l, double alpha,

double *a, double *b, double *c)">

<define dgemm Function#(mmHead, "int i, j, k;", nest3)>

<define mm_unroll (Unroll#(dgemm,loopK)) >

<define mm_block (Block#(dgemm,nest3,mmStmt))>

<define mm_permute (Permute#(dgemm,nest3,mmStmt))>

<define mm_block_unroll (Unroll#(mm_block,

InnermostLoop#(mm_block)))>

<output mm.c dgemm>

<output mm_unroll.c (Unroll.ur=8; mm_unroll)>

<output mm_block.c (Block.bsize=(8 64 128); mm_block)>

<output mm_permute.c (Permute.order=(3 2 1); mm_permute)>

<output mm_block_unroll.c

(Block.bsize=(16 16 8);Unroll.ur=8; mm_block_unroll)>

Fig. 2. POET definition of matrix multiplication

across different machines [22], [5], [8], [14], [19]. To extend

the success of empirically tuned libraries, recently, many

iterative optimizing compilers have been built to support

empirical performance tuning of general applications.

Although both the library-based and compiler-based em-

pirical tuning approaches are effective, there are some limits

to their generality and portability. The library-based ap-

proach requires manual orchestration of sophisticated low-

level optimizations and is therefore time consuming and

error-prone. Additionally, the optimization techniques cannot

easily transfer to other applications. The compiler-based

approach applies to all applications that have access to the

optimizing compiler. However, it restricts the applications

to optimizations available only within the compiler. The

empirical optimizing compiler cannot incorporate customized

code transformations, and it typically does not provides

much information to the outside world, e.g., why particular

transformations were or were not applied.

This paper presents a language, POET (Parameterized Op-

timization for Empirical Tuning), to decouple the empirical

tuning aspect of performance optimization from the specifics

of any library or compiler. POET is an embedded scripting

language which supports highly efficient and flexible param-

eterization of code optimizations for scientific computing. It

can be embedded in code written in any other language, such

as C, C++, or FORTRAN, by treating input code fragments

as parameterized strings without attempting to interpret the

underlying language. Figures I and 2 illustrate the POET

language definitions for optimizing a matrix multiplication

kernel. The output of the optimization is shown in Figure 5.

The details of the language is explained in Section II.

The goal of the POET language is to compactly describe

parameterized code optimizations and how these optimiza-

tions can be applied differently to improve the performance

of input applications. A POET script can be created for

each application, either by an optimizing compiler or by

a professional library developer. The script can then be

ported to different machine architectures and dynamically

configured by an independent empirical search engine, which

invokes a POET language interpreter to build different in-

stances of optimized code. We have carefully designed the

POET language to offer strong support for the following

capabilities.

• Generic restructuring transformations can be easily de-

fined and can be used to optimize arbitrary application

codes. The definition of loop unrolling in Figure I

illustrates an example of such generic code transfor-

mation. Library developers can easily use POET to

define their customized code transformations without

having to build any specialized compiler. We will define

and provide as part of the language distribution a code

transformation library which includes a large collection

of predefined generic code transformations. Both library

developers and optimizing compilers can use these pre-

defined transformations to optimize their code. Figure 2

illustrates how to apply predefined code optimizations

to a matrix-multiplication kernel.

• Important properties and special semantics of code

fragments can be easily expressed in the description of

input code. The information can then be utilized in the

definition of generic code transformations. In Figure I,

Function, Nest, Sequence and Loop are predefined code

templates which convey special meaning to the loop

unrolling transformation. By describing the input code

in Figure 2 in terms of these code templates, we can then

easily apply different loop optimizations to the matrix-

multiplication kernel. Through the language support

for specially tagged code templates, library developers

can encode their domain-specific knowledge within the

input code description, and optimizing compilers can

easily make the results of their program analysis avail-

able to the external world.

• Each restructuring transformation allows a collection

of integer tuning parameters (e.g., the ur parameter

for loop unrolling in Figure I) as the interface of

reconfiguration. An optimization space is therefore ex-

plicitly available to all independent search engines in the

empirical exploitation of best application performance.

Generic search engines can consequently be developed

without being tied to any specific compiler or library

optimization. The design of a better interface to inde-

pendent search engines is our ongoing work.

Note that the POET language parameterizes code transfor-

mations, which are typically the final stage of any program

optimization, instead of parameterizing the configuration of

any optimizing compiler. In fact, POET is designed to be

the output language of optimizing compilers. An optimizing

compiler will first perform program analysis to discover

all optimizations that might potentially improve application

performance. It then decomposes the possible result of op-

timization into a collection of POET code transformation

routines that can be applied to improve the input code. The
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POET output will then serve as the distribution form of

the application and can be empirically tuned whenever the

application needs to be ported to a different machine.

POET offers more flexible empirical tuning of application

performance because it serves as a modular communication

interface among independent optimizing compilers, appli-

cation developers, and empirical search engines. It offers

a generic tool to library developers in building their cus-

tomized collection of code optimizations and in allowing

such optimizations to be generalized for other applications. It

offers a portable output language for optimizing compilers to

generate parameterized code transformations and to explicitly

formulate program analysis results to the outside world.

The optimizing compiler no longer needs to reside on the

target machine for the application to be empirically tuned.

Moreover, programmers can modify and extend the output

of optimizing compilers to additionally incorporate their

domain-specific knowledge.

Besides the convenient flexibility provided by the POET

language, using POET can greatly improve the efficiency of

tuning since the compiler or professional library developer

needs to perform the analysis only once when creating the

scripts. The analysis result is then tuned as many times

as necessary without reapplying the analysis. To verify this

belief, we have implemented the POET interpreter and used

POET to parameterize three preliminary optimizations—loop

interchange, blocking and unrolling—for two linear algebra

kernels. We measured the time to empirically tune these

kernels both through POET parameterization and through a

full-blown source-to-source optimizer, and show that tuning

using POET takes significantly less time.

II. The POET Language

The concrete grammar of the POET language is shown

in Figure 3 and illustrated in Figure I and 2. In summary, a

POET script contains a collection of disjoint sections, each

uniquely identified by a global name and implemented by

mapping the unique name (the handle of the section) to a

POET expression.

A. Defining POET Sections

POET supports four different kinds of sections: code,

xform, define and output. The code and xform sections

are used to define generic code transformations which can be

applied to arbitrary code; the define and output sections are

used to describe transformations applicable to any particular

input code. Both code and xform sections use the pars

attribute to define a sequence of input parameters. The

xform section additionally uses the tune attribute to define

a sequence of integer parameters which can be used to

reconfigure the transformation. Each tuning parameter must

have a default value which defines the default behavior of

the transformation.

(1) poet : {section}

(2) section :

"<" "code" ID {codeAttr} ">" Exp "<" "/code" ">"

(3) | "<" "xform" ID {xformAttr} ">" Exp "<" "/xform" ">"

(4) | "<" "define" ID Exp ">"

(5) | "<" "output" FNAME Exp ">"

(6) codeAttr : "pars" "=" "(" ID {"," ID} ")"

(7) xformAttr : "pars" "=" "(" ID {"," ID} ")"

(8) | "tune" "=" "("ID"="INT{","INT} {";"ID"="INT{","INT}}")"

(9) Exp : Op

| Op ";" Exp | Op "," Exp | Op Exp

(10)Op : "if" Op "then" Op "else" Op

(11) | ID {"." ID} "=" Op

(12) | ID ":" Op

(13) | ID {"." ID} "#" Unit | ["car","cdr",INT] "#" Op

(14) | REPLACE "#" "(" Op "," Op "," Op ")"

(15) | PERMUTE "#" "(" Op "," Op ")"

(16) | DUPLICATE "#" "(" Op "," Op "," Op ")"

(17) | Op ["+","-","*"] Op | "-" Op

(18) | Op ["<","<=",">",">=","==","!="] Op

(19) | "!" Op | Op "&&" Op | Op "||" Op

(20) | Unit

(21)Unit : ID {"." ID} | INT | SOURCE | "(" Exp ")"

ID identifiers, e.g. Loop, Nest;
FNAME file names, e.g., mm.c, ../dgemm.c;
INT integer literals, e.g., 1, 0, 16, 64;
SOURCE strings of code fragments,

e.g. “c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k];”
{s1s2...sn} Zero or more occurrences s1s2...sn

e.g., {“, ”ID} (zero or more of “, ID”);
[t1, t2, .., tm] one token out of t1, t2, .., tm

e.g., [“ + ”, “ − ”, “ ∗ ”] (“+”, “-”, or “*”).

Fig. 3. Formal grammar of the POET language

(1) e := i e.val = i.val
(2) | s e.val = s.val

(3) | e1 e2 e.val = list(eval(e1), eval(e2))
(4) | e1 ,e2,...,em e.val = tuple(eval(e1), eval(e2), ..., eval(em))
(5) | car # e1 t = eval(e1); e.val = is list(t)?first(t) : t
(6) | cdr # e1 t = eval(e1); e.val = is list(t)?rest(t) : “”
(7) | i # e1 t = eval(e1); e.val = tuple elem(t, i.val)
(8) | cv # e1 if(!replaceCode) e.val = cv#eval(e1)

else {set pars(cv, eval(e1)); e.val = eval(find code(cv))}
(9) | e1 : e2 e.val = match AST (e1, e2)
(10)| dv e.val = find code(dv)
(11)| lv e.val = find value(lv)
(12)| lv = e1 set value(lv, eval(e1)); e.val = “”
(13)| xv # e1 set pars(xv, eval(e1)); e.val = eval(find code(xv))
(14)| repl(e1 ,e2,e3) e.val = Replace(eval(e1), eval(e2), eval(e3))
(15)| perm(e1, e2) e.val = Permute(eval(e1), eval(e2))
(16)| dup(lv, t, e1) for(i = 0; i < t; + + i)

{set value(lv, i); e.val = list(eval(e1), e.val)}
(17)| e1;e2 eval(e1): e.val = eval(e2)
(18)| if(e1 ,e2,e3) e.val = bool(eval(e1))? eval(e2) : eval(e3)
(19)| e1 opi e2 e.val = eval(e1)opie2.val

(20)| ! e1 e.val = ! bool(e1.val)
(21)| e1 opb e2 e.val = bool(e1.val) opb bool(e2.val)

Notations: i: integer constants; s: string constants; lv: local variables of the cur-

rent scope; cv: global handles of code sections; dv: global handles of define

sections; xv: global handles of xform sections; opi: integer binary operations

(+,−,∗,<,>,==,<=,>=,!=); opb: boolean binary operations (&&, ||).

Fig. 4. Evaluation rules for POET expression

a) The code Section: POET uses code sections to

define parameterized code templates that convey special

semantics. When an input program is defined in terms of

these code templates, a generic code transformation (defined

by xform sections) can recognize the structure of the input

program and apply optimizations accordingly. For example,

Figure I includes four code sections: Loop, Nest, Sequence

and Function. These templates have predefined meanings

which are recognized by the loop unrolling transformation
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defined in the Unroll section. When the matrix multiplica-

tion kernel is defined using these templates in Figure 2, it

can then benefit from the predefined generic optimizations

in opt.poet. Note that a reserved token, ‘@’, appears in the

code templates in Figure I but is skipped in the grammar

specification. The ‘@’ symbol is implicitly handled by

the POET lexical analyzer and is used solely for context

switching between POET definitions and source strings of

the underlying language.

b) The xform Section: Each xform section de-

fines a generic code transformation that can be applied

to optimize arbitrary code. As illustrated by the Unroll

section in Figure I, each xform section operates on an

input code, reorganizes various components within the input,

and returns the restructured code. The transformation relies

on a collection of predefined code templates to recognize

the structure of input code. All the inputs to a xform

section are defined using the pars attribute. In Figure I, the

Unroll transformation has two parameters, the input code

to transform (input) and the loop within input to unroll

(uloop).

Each xform section can additionally have a sequence

of tuning parameters which controls the re-configuration of

code transformation. In Figure I, the transformation Unroll

has a single tuning parameter, ur, which controls the loop

unrolling factor. Transformation tuning parameters can be

modified anywhere within a POET script, as illustrated by

the output sections of Figure 2.

c) The define and output Sections: In POET, the

define and output sections are used to decompose input

programs into pre-defined code templates and to dynamically

apply different transformations to optimize the input code.

Each define section is a macro definition which associates a

global name with a particular POET expression. Each output

section defines a file name and the POET expression that

should be output to the file as result of code optimization.

In the expected common case where all the necessary opti-

mizations have been predefined, users of POET only need to

write a collection of define and output sections to optimize

their code, as illustrated by Figure 2.

B. POET expressions

The non-terminal Exp in Figure 3 defines the concrete

syntax of a POET expression. Each POET expression is

internally translated into an abstract syntax tree (AST) repre-

sentation, which is dynamically evaluated when the result of

expression is needed. The abstract syntax of POET expres-

sions, as well as rules to evaluate each operation, are defined

in Figure 4. The following summarizes the composition of

POET expressions in more detail.

d) Atomic Values: POET supports two kinds of

atomic values, integers and strings, denoted by symbols i

and s, respectively, in Figure 4. A string value is defined

either by enclosing the content within a pair of double quotes

<xform BlockHelp pars=(nest, inner, blocks)>

if (nest == inner) then ("",nest,"")

else (

nest : Nest#(Loop#(i,start,stop,step),body);

ii = (i i);

if (blocks : ((bsize rsize))) then ""

else (bsize=blocks; rsize=blocks);

rest = BlockHelp#(body, inner, rsize);

ivars = 3#rest;

( (Loop#(ii,start,stop,bsize) 1#rest),

Nest#(Loop#(i,ii,("min("ii"+"bsize","stop")"),step),

2#rest),

(if (ivars=="") then ii else (ii "," ivars)))

)

</xform>

<xform Block pars=(input, nest1, inner) tune=(bsize=16)>

if (! (input : Nest#(loop,body))) then (

if (input : Function#(head,decl,body)) then (

"#define min(a,b) ((a < b)? a : b)" ENDL

Function#(head,decl,Block#(body,nest1,inner))

)

else if (input : Sequence#(s1,s2)) then

Sequence#(Block#(s1,nest1,inner),

Block#(s2,nest1,inner))

else input

)

else if (input != nest1) then

Nest#(loop, Block#(body,nest1,inner))

else (

rest = BlockHelp# (input, inner, bsize);

Sequence#( ("int " 3#rest ";" ENDL),

BuildNest#(1#rest, 2#rest))

)

</xform>

<xform Permute pars=(input, nest1, inner) tune=(order=0)>

if (order == 0) then input

else if (! (input : Nest#(loop,body))) then (

if (input : Function#(head,decl,body)) then

Function#(head,decl,Permute#(body,nest1,inner))

else if (input : Sequence#(s1,s2)) then

Sequence#(Permute#(s1,nest1,inner),

Permute#(s2,nest1,inner))

else input

)

else if (input != nest1) then

Nest#(loop, Permute#(body,nest1,inner))

else (

loops = FindLoopInNest#(nest1, inner);

nloops = PERMUTE#(order, loops);

BuildNest#(nloops, inner)

)

</xform>

Fig. 6. POET definition of loop blocking and

permutation

(e.g., “i < b”, “3.215”), or by simply placing the content

inside template definitions of code sections (e.g., the content

of Function in Figure I). POET provides a special string,

ENDL, to denote line-breaks in the underlying language.

e) Compound Data Structures: POET supports two

built-in compound data structures: list and tuple. Operations

supporting these data structures are defined in lines (3–7) of

Figure 4.

Lists are composed by simply concatenating elements

together. For example, a “<=” b produces a list ℓ with

at least three elements, a, “<=”, and elements from b

(if b is a list, ℓ contains all elements in b; otherwise, ℓ

contains b). Because the type of b is unknown,lists are

dynamic data structures that may contain arbitrary numbers

of elements. In contrast, tuples are composed by connecting

a predetermined number of elements with commas. For ex-

ample, “i′′, 0, “m′′, 1 produces a tuple t with four elements,

4



void dgemm(int m, int n, int l, double alpha,

double *a, double *b, double *c)

{

int i, j, k;

int kk;

for (i=0; i < m; i += 1) {

for (j=0; j < n; j += 1) {

for (k=0; k < l-7; k += 1) {

c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k]; k+=1;

c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k]; k+=1;

c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k]; k+=1;

c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k]; k+=1;

c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k]; k+=1;

c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k]; k+=1;

c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k]; k+=1;

c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k];

}for ( ; k < l; k+=1) {

c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k];

}

}

}

}

(a) Output in mm unroll.c

#define min(a,b) ((a<b)? a : b)

void dgemm(int m, int n, int l, double alpha,

double *a, double *b, double *c)

{

int i, j, k;

int ii, jj, kk;

for (ii = 0; ii < m; ii+=8) {

for (jj = 0; jj < n; jj+=64) {

for (kk = 0; kk < l; kk+=128) {

for (i = ii; i < min(ii+8,m); i+=1) {

for (j = jj; j < min(jj+64,n); j+=1) {

for (k = kk; k < min(kk+128,l); k+=1) {

c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k];

}

}

}

}

}

}

}

(b) Output in mm block.c

void dgemm(int m, int n, int l, double alpha,

double *a, double *b, double *c)

{

int i, j, k;

for (k=0; k < l; k += 1) {

for (j=0; j < n; j += 1) {

for (i=0; i < m; i += 1) {

c[i+j*m]+= alpha*b[k+j*l] * a[i+m*k];

}

}

}

}

(c) Output in mm permute.c

Fig. 5. Optimized matrix multiplication output from interpreting Figure 2

“i′′,0,“m′′,and 1. In practice, lists are used in almost all cases

due to their flexibility, and tuples are used to define values

with a known structure.

Elements in a list ℓ are accessed through two operations:

car#ℓ, which returns the first element of ℓ (if ℓ is not a list,

it simply returns ℓ); and cdr#ℓ, which returns the rest of the

list (if ℓ is not a list, it returns empty string). Similarly, each

element in a tuple t is accessed by invoking i#t, where i is

the index of the element being accessed. For example, if ℓ

= (a “<=d” 3), then car#ℓ returns a, car#cdr#ℓ returns

“<=”, and car#cdr#cdr#ℓ returns 3; if t = (i, 0, “m”, 1),
then 1#t returns “i”, 2#t returns 0, 3#t returns “m”, and

4#t returns 1.

f) Code Templates: Each code section in POET

defines a parameterized code template that conveys some

special semantics. The code template is treated as a unique

user-defined compound data structure, where the template

parameters are treated as data fields, until the final optimized

code needs to be output to an external file. As shown

at line (8) of Figure 4, unless the replaceCode is set to

true, which indicates the final output is being constructed,

the invocation of code template cv is simply treated as

building a compound data structure using the given template

argument(e1).

Treating code templates as user-defined compound data

structures not only allows compact representation of the input

program but also allows generic code transformations being

easily built and conveniently applied successfully, as illus-

trated by the mm block unroll optimization in Figure 2,

where loop blocking and unrolling are applied as separate

passes over the input code.

g) Determining Types Of Expressions: POET is a

dynamically typed language; that is, the types of all values

are dynamically checked immediately before they are used.

POET provides a pattern matching operation, syntactically

defined at line (12) of Figure 3, to examine types of ex-

pressions. The evaluation of pattern matching is defined at

line (9) of Figure 4, where the structures of e1 and e2 are

recursively examined to determine whether their types match.

Note that when uninitialized local variables appear in the

pattern matching operation, these variables are treated as

place holders which can be matched to arbitrary expressions.

If the type matching is successful, all the uninitialized

variables would have been assigned a valid value. Therefore

the pattern matching operation can be used both for dynamic

type checking and for initializing local variables. Both pur-

poses are illustrated extensively in the Unroll section of

Figure I.

h) Global and Local Variables: POET expressions

may contain both global and local variables. Global variables

are introduced by define sections and are denoted as dv in

Figure 4. Local variables are denoted as lv in Figure 4 and

can be introduced through the pars and tune attributes or

simply through the use of new names in code or xform

sections. Examples of local variables in Figure I include

init, test, incr in section Loop, and loop,body,head,decl,

dup in section Unroll. Two POET operations can be used

to initialize local variables, direct assignment (line (11) of

Figure 3 and pattern matching (line (12) of Figure 3. Both

operations are used extensively in Figure I.

i) Applying Code Transformation: Invocation of

code transformations (e.g., invocation of the Unroll section

in Figure I) is syntactically defined at line (13) of Figure 3.

As shown by line (13) of Figure 4, the evaluation first sets

the transformation parameters and then simply evaluates the

POET expression associated with the transformation handle

xv. Each invocation of xv is associated with a dynamic acti-

vation record implemented within entries of the local symbol

table, so that values of local variables are not disrupted by

recursive invocation of the transformation routines. Before

invoking each xform handle xv, the tuning parameters of

xv can be modified to allow dynamic reconfiguration of

transformation.

Besides code transformations defined in xform sections,

POET supports three built-in code transformations: replace,

which replaces all appearances of a data item with a different

value in a target expression; duplicate, which replicates

the target code by a pre-configured number of times; and

permute, which rearranges the order of elements in an

predefined list. All transformations return a new expression

as result instead of modifying any of the input parameters.

The syntax of these buildin transformations are defined at
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lines (14–16) of Figure 3, and their evaluations are defined

at lines (14–16) of Figure 4.

j) Control Flow and Integer/Boolean Operations:

POET supports three control-flow structures: sequence, con-

ditional and function call (e.g., invocations to code trans-

formations). Loops are not directly supported, and users are

expected to use recursive function calls instead.

Line (15–18) of Figure 4 defines the collection of integer

and boolean operations supported by POET. These opera-

tions include integer arithmetics (+,-,*), integer comparisons

(<,<=,>,>=,==,!=), and boolean arithmetics (!, && and

||). The semantic definition of these operations is straightfor-

ward and follows the C language. When evaluating boolean

operations, all input values are converted to integers (1 and

0) by invoking the bool function in Figure 4, which converts

empty strings to 0 and all other non-integer values to 1.

III. Using POET

The POET language is designed to support easy definition

of generic code transformations and efficient configuration

of parameterized transformations for empirical tuning. This

design objective is supported by treating user-defined code

templates as extensible compound data structures, by dy-

namic pattern matching in code transformations, and by dy-

namically re-configurable tuning parameters. The support of

generic code templates will particularly help both optimizing

compilers and professional library developers to communi-

cate their special knowledge about the input application. The

POET language can express all code transformations which

can be encoded using a recursive algorithm.

We have used POET to support the tuning of three

code optimizations: loop interchange, blocking, and un-

rolling. Figure 2 shows POET definitions for applying these

transformations to optimize a matrix multiplication kernel.

The definition of loop unrolling is shown in Figure I. The

definition of loop blocking and permutation is shown in

Figure 6.

The output code from applying unrolling, blocking and

permutation transformations are shown in Figure 5. We pur-

posefully defined all the transformations to produce almost

identical output as produced by our source-to-source loop

optimizer [24]. The transformation can certainly be adapted

so that the output code is more efficient. How to best apply

important transformations in POET is an important research

topic that we will address in future work.

IV. Experimental Results

To show that using POET can significantly reduce the

code generation time of empirical tuning, we experimentally

compared the tuning time using POET to the time using a

full-blown source-to-source optimizer, for two dense linear

algebra kernels.

A. Experimental Setup

We empirically searched the optimization space of

two kernels, dense double-precision matrix-matrix multiply

(DGEMM) and matrix-vector multiply (DGEMV), on a 3.4GHz

Pentium 4, using gcc 3.4.4 as the back-end compiler. We

used baseline C implementations of these kernels that are

simplified from the complete BLAS implementations. We

exploited the search space of applying loop interchange,

blocking and unrolling optimizations to both kernels.

We used the source-to-source loop optimizer developed

by Yi, et al. [24]. The optimizer is called LoopProcessor

and is implemented within the ROSE compiler infrastruc-

ture [17]. We used command-line options to configure what

transformations LoopProcessor should apply to our kernel

implementations.

For empirical tuning, we used a search engine developed

by You, et al. [26]. The search engine is based on the Nelder-

Mead simplex search, which is a non-derivative based direct

search method. For comparison, we have implemented a

second search technique which is completely random and

stops after a predetermined number of evaluations (trials).

B. Results and Discussion

Table I shows the overall search time and the best perfor-

mance of optimized kernels using the POET approach and the

LoopProcessor respectively. Each table entry is the averaged

result of ten runs of applying the simplex search for the

best blocking and unrolling factors. Since the simplex search

starts from random points and continues until a desired

performance level is observed, the number of trial evaluations

typically varies from run to run. On average using POET and

LoopProcessor perform a similar number of evaluations. The

search time in Table I includes the time to generate, compile

(using gcc), and execute instances of the optimized kernels.

From Table I, the overall search time using POET is more

than two times faster than using LoopProcessor, whereas the

optimized kernels produced by POET also perform better

compared to kernels produced by the LoopProcessor. The

lagging performance of optimizations by LoopProcessor is

due to several calls to a function min which is not inlined

by the back-end gcc compiler, while the POET script defines

min as a macro instead of a function call. The LoopProcessor

lacks the ability to generate macros due to implementation

issues.

To ensure a fair comparison between the empirical tuning

time spent in the POET interpreter and in the LoopProcessor,

Figures 7 and 8 separate out the time spent in generating all

the blocked code (with varying block sizes but no inner-loop

unrolling) and all the unrolled code (with varying unrolling

factors but no blocking) respectively. From these two fig-

ures, using POET is nearly an order of magnitude faster,

largely because it avoids the expensive analysis required

by LoopProcessor. When using large unrolling factors with
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Code Number of Search Search time(sec) Generated Code
Routine Generator Evaluations Time (sec) per evaluation Run Time (sec)

DGEMM POET 193.0 356.43 1.8468 7.95

N=1000 LoopProcessor 164.6 869.77 5.2841 9.69

DGEMV POET 151.2 287.57 1.9019 0.02

N=2000 LoopProcessor 146.0 734.72 5.0323 0.04

TABLE I. Comparison of search times
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Fig. 8. Code generation time for different unroll factors

LoopProcessor, the code generation consumes most of the

overall evaluation time. The POET interpreter does not suffer

from this performance degradation, which results in much

shorter code generation time.

To further inspect the quality of our optimized kernels,

Figures 9 and 10 present the performance results of compar-

ing our best optimized kernels with ATLAS, a highly tuned

linear algebra library [22]. Here we increased the search

space to four dimensions for DGEMV (loop interchange,

unrolling, and two levels of blocking) and to five dimensions

for DGEMM (loop interchange, unrolling, and three levels of

blocking). Simplex search performs consistently better than

random search for DGEMM, while random search performs

better consistently for DGEMV.

Figures 9 and 10 also show that the best POET-optimized

versions perform performs slightly worse than ATLAS for

DGEMV, but more than four times slower for DGEMM.

The performance gap is due to the currently non-existing

statement- and instruction-level optimizations in the POET-

produced versions. Our future work will extend the POET

scripts for these kernels to include more low-level optimiza-

tions.

V. Related Work

A key purpose served by the POET language is param-

eterization of generic code transformations for empirical

tuning, where the application of transformations to any given

input code is dynamically experimented and modified until

a desired optimization is found. This distinguishes POET

from the large, existing body of work on powerful languages

and tools for expressing static code transformations [20],

[1]. We intend to use POET in the context of an empirical

search process; we do not specifically address run-time

code generation as performed by more general multistage

languages and systems [2], [7], [10], [11].

Our work is influenced by research on domain-specific

automatic tuning systems, such as those for dense and sparse

linear algebra [5], and signal processing [8], [14], among oth-

ers [19], [21]. These systems feature special parameterized

code generators which take as input a desired kernel and spe-

cific parameter values, and output a kernel implementation,

typically in FORTRAN or C. The POET approach targets

general applications, but could aid in the development and

maintenance of such domain-specific generators.

POET supports existing iterative compilation frame-

works [12], [13], [16], [18], [9]. In particular, POET’s explicit

parameterization is designed to clearly separate analysis and

code generation phases from the search phase. This permits

the arbitrary use of search and modeling techniques [21],

[15], [25], [3].

Similar to POET, the X language [6] also aims at support-

ing compact representation of multiple program versions for

empirical tuning. The X language is an annotation language

which uses C/C++ pragma and macro substitution to guide

the application of a pre-defined collection of loop- and

statement-level optimizations by a compiler. The X language

parameterizes the behavior of an optimizing compiler instead

of the final code transformation result. While the original pro-

gram source is more readily available using X annotations,

the only mechanism for defining new transformations, be-

sides those pre-defined, is based on pattern-matching rewrite

rules. In contrast, POET is a extensible language that allows

programmers to build arbitrary customized optimizations and

allows more flexible parameterization and control of both

predefined and customized optimizations.

Both the POET and X languages would benefit greatly

from compiler technologies that effectively parameterize

code optimizations. For example, Cohen, et al. [4] uses the

polyhedral model to parameterize the composition of loop

transformations applicable to a code fragment. Developing

compiler techniques to effectively parameterize complex

code optimizations is a focus of our future research.
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VI. Conclusion

This paper presents an embedded scripting language,

POET, for both flexible and efficient empirical tuning of

application performance. The POET language can be em-

bedded within arbitrary programming languages such as C,

C++, or FORTRAN, and support efficient parameterization

of general code transformations produced either by compilers

or by professional programmers. POET is an essential part

of the automated tuning process, serving to simplify the gen-

eration of complex code transformations. Our experimental

results have verified that using POET parameterization can

significantly reduce the empirical tuning time of otherwise

using a sophisticated source-code optimizer.
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