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Abstract
We describe a parallel fast multipole method (FMM) for 
highly nonuniform distributions of particles. We employ 
both distributed memory parallelism (via MPI) and shared 
memory parallelism (via OpenMP and GPU acceleration) to 
rapidly evaluate two-body nonoscillatory potentials in three 
dimensions on heterogeneous high performance comput-
ing architectures. We have performed scalability tests with 
up to 30 billion particles on 196,608 cores on the AMD/
CRAY-based Jaguar system at ORNL. On a GPU-enabled sys-
tem (NSF’s Keeneland at Georgia Tech/ORNL), we observed 
30× speedup over a single core CPU and 7× speedup over a 
multicore CPU implementation. By combining GPUs with 
MPI, we achieve less than 10 ns/particle and six digits of 
accuracy for a run with 48 million nonuniformly distributed 
particles on 192 GPUs.

1. INTRODUCTION
N-body problems are the computational cornerstone of 
diverse problems in mathematical physics,16 machine learn-
ing,8 and approximation theory.4 Formally, the problem is 
how to efficiently evaluate

	 � (1)

which is essentially an O(N2) computation of all pairwise 
interactions between N particles. We refer to f as the “poten-
tial,” s as the “source density,” x as the coordinates of the 
target particles, y as the coordinates of the source parti-
cles, and K as the interaction kernel. For example, in elec-
trostatic or gravitational interactions K(x, y) = K(r) =   with 
r = x − y and  |r| its Euclidean norm. Equation (1) expresses 
an N-body problem.

The challenge is that the O(N2) complexity makes the 
calculation prohibitively expensive for problem sizes of 
practical interest. For example, understanding blood flow 
mechanics21 or understanding the origins of the universe26 
requires simulations in which billions of particles interact.

Given the importance of N-body problems, there has 
been a considerable effort to accelerate them. Here is the 
main idea: the magnitude and variance of K(r) decay with 
|r|, and so when the particles or groups of particles are well 
separated, the interactions can be approximated with small 
computational cost. But the details are tricky. How can we 
perform the approximation? Can we provide rigorous error 

and complexity bounds? And how do we implement these 
approximations efficiently?

One of the first successful attempts toward fast schemes 
was the Barnes–Hut method1 that brought the complexity 
down to O(N log N). Greengard and Rokhlin3, 10, 22 solved the 
problem. They introduced the fast multipole method (FMM) 
that uses a rapidly convergent approximation scheme that 
comes with rigorous error bounds and reduces the overall 
complexity (in three dimensions) to O(log(1/)3N), where 
 is the desired accuracy of the approximation to the exact 
sum. This result is impressive: we can evaluate the sum in 
Equation (1) in arbitrary precision in linear time.

So how does FMM work? Here is a sketch. Given the posi-
tions of particles for which we want to compute all pairwise 
interactions, we build an octree (henceforth we just consider 
FMM in three dimensions) so that any leaf node (or octant) 
has approximately a prescribed number of particles; then 
we perform tree traversals to evaluate the sum. We perform 
a postorder (bottom-up) traversal followed by a preorder tra-
versal (top-down). The postorder traversal consists of calcu-
lations that involve an octant and its children. The preorder 
traversal is more complex, as it involves several octants in a 
neighborhood around the octant being visited.

At this level of abstraction, we begin to see how we might 
parallelize the FMM. When the distribution of particles is 
uniform, the analysis is relatively straightforward: we per-
form the traversals in a level-by-level manner, using data 
parallelism across octants in each level. The longest chain of 
dependencies is roughly O(log N). The challenge lies in the 
case of nonuniform particle distributions, in which even the 
sequential case becomes significantly more complicated.3

Summary of the method: We describe and evaluate an 
implementation of the FMM for massively parallel distrib-
uted memory systems, including heterogeneous architec-
tures based on multicore CPU and GPU co-processors. We 
use the message passing interface (MPI) for expressing 
distributed memory parallelism, and OpenMP and CUDA 
for shared memory and fine-grain parallelism. There exist 
many variants of FMM, depending on the kernel and the 

The original version of this paper has the same title and 
was published in the 2009 Proceedings of the Conference 
on  High Performance Computing Networking, Storage and 
Analysis. Some results in this paper also appeared in 
Reference Rahimian et al, 2010.
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interaction approximation scheme. Our implementation 
is based on the kernel-independent FMM.28, 29 However, this 
choice affects only the construction of certain operators 
used in the algorithm. It does not affect the overall “flow” 
of the algorithm or its distributed-memory parallelization. 
(It does affect single-core performance as vectorization and 
fine-grain parallelism depend on the FMM scheme.)

Our parallel algorithm can be summarized as follows. 
Given the particles, distributed in an arbitrary way across 
MPI processes, and their associated source densities, we 
seek to compute the potential at each point. (For simplic-
ity, in this paper, we assume that source and target points 
coincide.) First, we sort the points in Morton order,24 a kind 
of space-filling curve, and then redistribute them so that 
each process owns a contiguous chunk of the sorted array. 
Second, we create the so-called locally essential tree (LET, 
defined in Section 3), for each process in parallel. Third, we 
evaluate the sums using the LETs across MPI processes and 
using GPU and OpenMP acceleration within each process. 
All the steps of the algorithm are parallelized, including tree 
construction and evaluation.

Related work: There is a considerable literature on par-
allel algorithms for N-body problems. A work–depth analy-
sis of the algorithm gives O(N) work and O(log N) depth for 
particle distributions that result in trees that have depth 
bounded by O(log N). Greengard and Gropp analyzed and 
implemented the algorithm using the concurrent-read, 
exclusive-write (CREW) PRAM model for the case of uniform 
particle distributions.9 The implementation is straightfor-
ward using level-by-level traversals of the tree and using data 
parallelism. The complexity of the algorithm, omitting the 
accuracy-related term, is O(N/p) + O(log p), where p is the 
number of threads. This result extends to message passing 
implementations.

The implementation, parallel scalability, and complexity 
analysis become harder when one deals with nonuniform 
distributions of particles. Callahan and Kosaraju2 propose 
an exclusive read exclusive write (EREW)-PRAM algorithm 
with p = N processors which is work optimal, takes log p time, 
and does not depend on the distribution of the points. To our 
knowledge, that algorithm has not been used in practice. Our 
algorithm uses many ideas that first appeared in the seminal 
work of Warren and Salmon, who introduced space-filling 
curves using Morton-ordering for partitioning the points 
across processors, the notion of local essential trees (LET), 
and a parallel tree construction algorithm.27 These ideas 
were widely adopted and analyzed in other works.7, 23

Teng was the first to provide a complexity analysis that 
accounts for communication costs for particle distributions 
whose tree depth is bounded by log N (in finite floating point 
precision, all particle distributions satisfy this assump-
tion).25 The key idea is to build a communication graph in 
which graph nodes correspond to tree octants and edges to 
interactions between octants. Teng shows that FMM com-
munication graphs have a bisector whose edge cut (in three 
dimensions) is bounded by O(N2/3(log N)4/3); to compare, 
the bisector for a uniform grid is O(N2/3). This result shows 
that scalable FMM calculations are theoretically possible. 
Teng outlines a divide-and-conquer parallel algorithm to 

construct and partition the tree. Morton-order sorting is 
used to build the tree and repartitioning is done using a geo-
metric graph partitioning method that guarantees low edge-
cut and good load balancing.18 Assuming (1) a parallel radix 
sort is used to partition the points and (2) the depth of the 
FMM tree grows logarithmically with N, the overall algorithm 
scales as O(N/p) + O(log p). The constants in the complexity 
estimates involve flop rate, memory latency, and bandwidth 
parameters of the underlying machine architecture.

Work that is focused more on actual implementations 
and performance analysis includes Kurzak and Pettitt15 
and Ogata et al.19 Several groups have been working on 
GPU acceleration.5, 11, 12, 20, 30 Finally, for nearly uniform 
distributions of particles, one can use fast Fourier trans-
forms (particle-in-cell methods) to calculate the sums in 
O(N log N) time.

Contributions: To our knowledge, there are no FMM 
implementations that demonstrate scalability on thousands 
of MPI processes for highly nonuniform particle distribu-
tions. Our main contribution is to produce and demonstrate 
the scalability of such an implementation that exploits all 
levels of parallelism. In Section 3, we discuss the distributed 
memory parallelism and introduce a novel FMM-specific all-
reduce algorithm that uses hypercube routing. In Section 4, 
we introduce the shared memory parallelism of our imple-
mentation, and in Section 5, we discuss our experiments 
and the scalability results.

2. OUTLINE OF FMM
In this section, we describe the FMM data structures, the 
main algorithmic steps, and the parallel scalability of the 
method. Without loss of generality for the rest of the paper, 
we assume that the source particles yj and the target par-
ticles xi coincide. The FMM tree construction ensures that 
every leaf octant contains no more than q particles. The 
sequential algorithm is simple: the root octant is chosen to 
be a cube that contains all the particles; we insert the par-
ticles in the tree one by one; we subdivide an octant when it 
contains more than q particles. The parallel construction is 
more involved, and we describe it in Section 3.

After the tree construction, for each octant b we need 
to construct its interaction lists. These lists contain other 
octants in the tree. Each list represents a precisely defined 
spatial neighborhood around b, and for every list we have to 
compute “interactions” between b and the octants in that 
list. By “interactions,” we refer to floating point operations 
that correspond to matrix–matrix or matrix–vector multipli-
cations. Once the interaction lists have been constructed, the 
tree is traversed twice: fist bottom-up and then top-down. In 
each traversal for each octant, we perform calculations that 
involve other octants in its interaction lists.

One difficulty in FMM codes is the efficient math-
ematical representation and implementation of the 
octant–octant interaction matrices so that we achieve algo-
rithmic efficiency without compromising accuracy. The size 
of the matrices varies, but typical dimensions are 100–1000, 
depending on the implementation. FMM algorithm design-
ers seek to reduce the size of the matrices, to employ sym-
metries to reduce storage needs, to use precomputation, 
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and to use fast approximations (e.g., fast Fourier transforms 
or low-rank singular value decompositions). All we need to 
remember here is that once we fix the desired accuracy, the 
computation of the interactions between an octant b and the 
octants in its interaction lists can be completed in O(1) time.

Now let us give the precise definition of these lists. For 
each octant b in the tree, we create four lists of octants, the 
so-called U-, V-, W- and X-list.3 The U-list is defined only for 
leaf octants. For a leaf octant b, the U-list of b consists of all 
leaf octants adjacent to b, including b itself. (We say that a is 
adjacent to b if b and a share a vertex, an edge, or a face.) For 
any octant b, its colleagues are defined as the adjacent octants 
that are in the same tree level. The V-list of an octant b (leaf 
or non-leaf) consists of those children of the colleagues of b’s 
parent octant, P(b), which are not adjacent to b. The W-list 
is only created for a leaf octant b and contains an octant a 
if and only if a is a descendant of a colleague of b, a is not 
adjacent to b, and the parent of a is adjacent to b. The X-list of 
an octant b consists of those octants a which have b on their 
W-list. These definitions are summarized in Table 1.

For each octant b ∈ T, we store its level  and two vectors, 
u and d. The u vector is an approximate representation of the 
potential generated by the source densities inside b. This 
representation is sufficiently accurate only if the evaluation 
particle is outside the volume covered by b and the colleagues 
of b. For the u vector we will use the name “upward equiva-
lent density” or simply “upward density.” This terminology 
is motivated by Ying et al.28, 29

The d vector is an approximate representation of the 
potential generated by the source densities outside the volume 
covered by b and colleagues of b. This approximate representa-
tion is sufficiently accurate only if the evaluation particle is 
enclosed by b. For the d vector we will use the name “down-
ward equivalent density” or simply “downward density.” 
For leaf octants (b ∈ L), we also store x, s, and f. Given the above 

definitions, approximately evaluating the sum in Equation 
(1) involves an upward computation pass of T, followed by a 
downward computation pass of T, seen more specifically in 
Algorithm 1. Let us reiterate that the details of the “inter-
act” step in Algorithm 1 depend on list type and the under-
lying FMM scheme.

2.1. Parallelizing the evaluation phase
Understanding the dependencies in Algorithm 1 and devis-
ing efficient parallel variants can be accomplished by 
using distributed and shared memory programming mod-
els. These models can then be implemented using MPI, 
OpenMP, and GPU application programming interfaces.

There are multiple levels of concurrency in FMM: across 
steps (e.g., the S2U and ULI steps have no dependencies), 
within steps (e.g., a reduction on octants of an octant b dur-
ing the VLI step), and vectorizations of the per-octant calcu-
lations. In fact, one can pipeline the S2U, U2U, and VLI steps 
to expose even more parallelism. We do not take advantage 
of pipelining because it reduces the modularity and general-
ity of the implementation.

The generic dependencies of the calculations outlined in 
Algorithm 1 are as follows: The Approximate Interactions 
(except for steps (5a) and (5b) ) and Direct Interactions 
parts can be executed concurrently. For the approximate 
interaction calculations, the order of the steps denotes 
dependencies, for example, step (2) must start after step (1) 
has been completed. Steps (3a) and (3b) can be executed in 
any order. However, concurrent execution of steps (3a) and 
(3b) requires a concurrent write with accumulation. This is 
also true for the steps (5a) and (5b), they are independent up 
to concurrent writes.

Table 1. Notation. Here we summarize the main notation used to 
define the interaction lists for each octant in the FMM tree. (The 
symbol “\” denotes standard set exclusion.) Note that a ŒW(b) need 
not be a leaf octant; conversely, since W(b) exists only when b Œ L, 
a ŒX(b) implies that a Œ L. We say that a is adjacent to b if b and a 
share a vertex, an edge, or a face. See Figure 1 for an example of the 
U, V, W, and X lists in two dimensions.

a, b Octants in the FMM tree
 FMM tree level
q Maximum number of particles/octant

Octant lists
T The FMM tree
L All leaf octants
P(b) Parent octant of b (/0 for root of T )
A(b) All ancestor octants of b
K(b) The eight children octants of b (/0 for b Î T )
D(b) All descendant octants of b in T
C(b) (colleagues) Adjacent octants to b, same level
J(b) Adjacent octants to b (arbitrary level)
U-list: a Î U(b) a Î L adjacent to b (note: b Î U(b))
V-list: a Î V(b) a Î K(C(P(b) ) )\C(b)
W-list: a Î W(b) a Î D(C(b) )\J(b), P(a) Î J(b)
X-list: a Î X(b) iff b Î W(a)

I(b) (interaction) V(b) ∪ U(b) ∪ W(b) ∪ X(b)
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Figure 1. FMM lists. Here we show an example of the U, V, W, and X 
lists in two dimensions for a tree octant B. One can verify that I(B) is 
inside the domain enclosed by C(P(B) ).
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Algorithm 1. 

// APPROXIMATE INTERACTIONS
// (1) S2U: source-to-up step
  ∀b ∈ L : source to up densities interaction
// (2) U2U: up-to-up step (upward)
  Postorder traversal of T
  ∀b ∈ T : interact(b, P(b ))
// (3a) VLI : V-list step
  ∀b ∈ T : ∀a ∈ V(b ) interact(b, a);
// (3b) XLI : X-list step
  ∀b ∈ T : ∀a ∈ X(b ) : interact(b, a);
// (4) D2D: down-to-down step (downward)
  Preorder traversal of T
  ∀b ∈ T : interact(b, a);
// (5a) WLI: W-list step
  ∀b ∈ L : ∀a ∈ W(b ) : interact(b, a);
// (5b) D2T : down-to-targets step
  ∀b ∈ L : evaluate potential on xi ∈ b;

//DIRECT INTERACTIONS
// ULI: U-list step (direct sum)
  ∀b ∈ L : ∀a ∈ Ub : interact(b, a);

Our overall strategy is to use MPI-based distributed mem-
ory parallelism to construct the global tree and to partition 
it into overlapping subtrees (the LETs) in order to remove 
dependencies between steps (3a)/(5a) and (3b)/(5b). We handle 
the concurrent writes explicitly and we use shared-memory-
based parallelism on GPUs within each MPI process to 
accelerate the direct interactions and steps (1), (3), (5) of the 
indirect interactions in Algorithm 1. In the following sec-
tions, we give the details of our approach.

3. DISTRIBUTED MEMORY PARALLELISM
The main components of our scheme are (1) the tree 
construction, in which the global FMM tree is built and each 
process receives its locally essential tree and a set of leaves 
for which it assumes ownership and (2) the evaluation, in 
which each process evaluates the sum at the particles of the 
leaf octants it owns. This sum has two components: direct 
interactions (evaluated exactly) and indirect interactions 
(evaluated approximately).

The input consists of the particles and their source den-
sities. The output of the algorithm is the potential at the 
particles. Before we describe the algorithm, we need the fol-
lowing definition:27

Locally essential tree (LET): Given a partition of L across 
processes so that Lk is the set of leaf-octants assigned to the 
process k (i.e., the potential in these octants is computed by 
process k), the LET for process k is defined as the union of 
the interaction lists of all owned leaves and their ancestors:

The basic idea27 for a distributed memory implementa-
tion of the FMM algorithm is to partition the leaves of the FMM 
tree across processes, construct the LET of each process, 
and then compute the N-body sum in parallel. There are two 
communication-intensive phases in this approach: the first 

phase is the LET construction and the second phase is an all-
reduce during evaluation. Next, we discuss the main compo-
nents in these two phases.

3.1. Tree construction
The inputs for the tree construction procedure are the 
particles. The output is the local essential tree on each 
process, which is subsequently used in the computation, 
along with geometrical domain decomposition of the unit 
cube across MPI processes. The latter is used throughout 
the algorithm. The tree construction involves (1) the con-
struction of a distributed linear complete octree that con-
tains only the leaf octants and (2) the construction of the 
per-process LETs.

We start by creating the distributed and globally Morton-
sorted array containing all the leaves from the global tree. 
The algorithms for this task are known (we use the one 
described in Sundar et al.;24 see also Hariharan and S. 
Aluru13), and their main ingredient is the parallel Morton-
sort of particles. This sort determines the overall complexity 
of the tree construction.

The distribution of the leaves between processes induces 
a geometric partitioning of the unit cube: each process con-
trols the volume covered by the leaves it owns. By Wk, we will 
denote the region “controlled” by process k. Each process 
stores the overall geometric partitioning: we use an MPI_
AllGather to exchange the first and last octants of their 
region, which is all is needed to define the partition.

Next, each process adds all ancestor octants to its local 
leaves, thus creating a local tree. The task of exchanging 
information about “ghost” octants still remains to be com-
pleted. To accomplish that, let us introduce the following 
definitions:

•  “Contributor” processes of an octant b ∈ T:
Pc(b ) := k ∈ 1 . . . p : b overlaps with Wk

•  “User” processes of an octant b:
Pu(b ) := k ∈ 1 . . . p : P(b ) or C(P(b )) overlaps with Wk.

Let Ikk′ be the set of octants to which process k contributes 
and which process k′ uses. Then, process k must send all 
octants in Ikk′ to MPI process k′. Figure 2 provides an illus
tration of this procedure. That is, each process contributor of 
each octant sends the octant data to all users of that octant. 
Once the exchange of the Ikk′ lists has been completed, all 
MPI processes insert received octants into their local trees. 
This concludes the construction of the per-process LETs. 
We summarize the construction of the local essential trees 
in Algorithm 2.

The correctness of the construction is based on the 
direct relation between LET and FMM. Consider the poten-
tial generated by the sources enclosed by some octant b. 
In order to evaluate this potential outside the volume cov-
ered by C(P(b ) ), one does not need information regard-
ing sources or upward densities associated with b, since 
the upward density of some ancestor of b would be used 
instead. This observation can be used to formalize the cor-
rectness of the LET construction. See Lashuk et al.17 for a 
more detailed discussion.
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Algorithm 2. LET construction

Input: distributed set of particles x;
Output: LET on each process k

1. Lk = Points20ctree(x)			   //MPI
2. Bk = Lk ∪ A(Lk)
3. Ikk′ := {b Î Bk : P(b) or C(P(b) ) overlaps with Ωk′}
4. "k¢ : k¢ ¹ k

  Send Ikk ′ to process k¢			   //MPI
  Recv Ik′k  from process k¢			   //MPI
  Insert Ik′k in Bk

5. Return Bk

In the last step of Algorithm 2, every process indepen-
dently builds U, V, W, and X lists for the octants in its LET 
which enclose the local particles (where the potential is to be 
evaluated). All necessary octants are already present in the 
LET, so no further communication is required in this step.

3.2. Load balancing
Assigning each process an equal chunk of leaves may lead to 
a substantial load imbalance during the interaction evalua-
tion for nonuniform octrees. In order to overcome this dif-
ficulty, we use the following load-balancing algorithm.

After the LET setup, each leaf is assigned a weight, based 
on the computational work associated with its U, V, W, and 
X lists (which are already built at this particle). Then, we 
repartition the leaves to ensure that total weight of the leaves 
owned by each process is approximately equal. We use 
Algorithm 1 from Sundar et al.24 to perform this repartition-
ing in parallel. Note that similarly to the previous section, 
each process gets a contiguous chunk of global (distributed) 
Morton-sorted array of leaves. In the final step, we rebuild 
the LET and the U, V, W, and X lists on each process.

Note that we repartition the leaves based solely on 
work balance ignoring the communication costs. Such an 
approach is suboptimal, but is not expensive to compute 
and works reasonably well in practice. In addition to leaf-
based partitioning, the partitioning at a coarser level can 
also be considered;25 we have not tested this approach.

3.3. FMM evaluation
Three communication steps are required for the potential 
evaluation. The first is to communicate the source densities 
for the U-list calculation. This communication is “local” in a 
sense that each process typically communicates only with its 
spatial neighbors. Thus, a straightforward implementation 
(say, using MPI_Isend) is acceptable.

The second communication step is to sum up the upward 
densities of all the contributors of each octant, the U2U step. 
During this step (bottom-up traversal), each process only 
builds partial upward densities of octants in its LET. The 
partial upward densities of an octant do not include contribu-
tions from descendants of the octant that belong to other MPI 
processes. For this reason, we need a third step, a communi-
cation step, to collect the upward densities to the users of 
each octant. This communication step must take place after 
the U2U step and before the VLI and XLI steps. Once this step 
is completed, every process performs a top-down traversal of 
its LET without communicating with other processes.

Algorithm 3 describes a communication procedure that 
combines the second and the third steps mentioned above. 
This algorithm resembles the standard “AllReduce” algo-
rithm on a hypercube. What follows is the informal descrip-
tion of the algorithm.

At the start, each processor r forms a pool S of octants 
(and their upward densities) which are “shared”, that is, not 
used by r alone. The MPI communicator (set of all MPI pro-
cesses) is then split into two halves (for simplicity, we shall 
assume that the communicator size is a power of two) and 
each processor from the first half is paired with a “peer” pro-
cessor from the other half.

Now consider those octants in S which are “used” by 
some processor from the other half of the communica-
tor (not necessarily a peer of r). If such octants exist, r 
sends them (together with upward densities) to its “peer”. 
According to the same rule, the “peer” will send some (pos-
sibly none) octants and densities to r. The received octants 
will be merged into S, eliminating duplicate octants while 
summing densities for duplicate octants.

At this point, no further communication between the 
two halves is required, and the algorithm proceeds recur-
sively by applying itself to each of the halves. We finally note 
that after each communication round, S is purged from the 
“transient” octants which are no longer necessary for com-
munications and not used locally at r.

The time complexity of this algorithm is not worse than . 
To be more specific, assuming that no process uses more than 
m shared octants and no process contributes to more than m 
shared octants, for a hypercube interconnect, the communi-
cation complexity of Algorithm 3 is ,  
where ts and tw are the latency and the bandwidth constants, 
respectively. See Lashuk et al.17 for a proof.

After the three communication steps, all the remain-
ing steps of Algorithm 1 can be carried out without further 
communication.

3.4. Complexity for uniform distributions of particles
We have all the necessary ingredients to derive the overall 
complexity of the distributed memory algorithm for uniform 
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Figure 2. Communication of ghost octants. Process 0 sends green 
octants to process 1, red octants to process 2, and brown octants 
to both 1 and 2. White octants in lower-left corner are “internal” to 
process 0 and not sent to anyone. The procedure is applied to both 
leaves and non-leaf octants. (a) Finer level of octree. (b) Coarser 
level of  octree.
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distributions of particles. Let N be the number of particles 
and let p be number of processes. The number of octants is 
proportional to the number of particles. The first commu-
nication cost is associated with the parallel sort of the input 
particles. We have used a comparison sort instead of bin-
ning, so its time complexity is  (combina-
tion of sample sort and bitonic sort).6 Exchanging the “ghost” 
octants has the same complexity as the reduce-broadcast 
algorithm described in Section 3.3, that is, , where m 
is the maximal number of “shared” octants between two pro-
cesses. For a uniform grid, m can be estimated as O( (N/p)2/3) 
divided by p. The communication also includes the exchange 
of source densities. Assuming that the bandwidth of the sys-
tem is reasonably high, we can neglect all lower order com-
munication terms. In summary (assuming large enough 
bandwidth but assuming nothing about latency), the overall 
complexity of the setup phase is . For 
the evaluation, we have .

Algorithm 3. Reduce and Scatter

Input: partial upward densities of “shared” octants at “contrib-
utor” processes
Input: r (rank of current process); assume communicator size 
is 2d

Output: upward densities of “shared” octants at “user” 
processes

//Define shared octants (for each process):
S = {b ∈ LET : #(Pu(b) ∪ Pc(b ) ) > 1}
//Loop over communication rounds (hypercube dimensions)
For i := d − 1 to 0
  //Process s is our partner during this communication round
  1. s := r XOR 2i

  2. us = s AND (2d − 2i)
  3. ue = s OR (2i − 1)
  4. Send to s : 
  5. qs = r AND (2d − 2i)
  6. qe = r OR (2i − 1)
  7. Delete 
  //Reduction
  8. Recv from s and append S
  9. Remove duplicates for S
  10. Sum up densities for duplicate octants.

For a nonuniform particle distribution, the complexity 
estimates for the setup and evaluation phases include an 
additional  term. Since we do not have a (nontrivial) 
bound on m, this result is worse than what is theoretically 
possible by Teng’s algorithm. (He partitions the tree using 
both work and communication costs instead of just using 
the work at the leaf octants.)

4. INTRA-NODE PARALLELISM
A key ingredient to the efficiency of the overall algo-
rithm is highly tuned intra-node performance. Many 
current supercomputing systems have heterogeneous 
nodes, meaning they have both conventional general-
purpose multicore CPU processors and more specialized 

high-speed co-processors, such as GPUs. Consequently, 
our implementation can exploit both CPUs (via OpenMP) 
and GPUs (via CUDA).

Shared memory parallelization is common for either 
type of processor. For the S2U, D2T, ULI, WLI, VLI, and XLI 
steps, we can visit the octants in an embarrassingly parallel 
way. Moreover, all octant visits include octant-to-octant or 
octant-to-particle interactions expressed as matrix–vector 
multiplications. The matrices are dense except for the VLI 
calculations, which correspond to a diagonal translation. 
Thus, overall there are two levels of parallelism: across 
octants and across the rows of the corresponding matrix. 
The same approach to parallelism applies on both CPU and 
GPU co-processors, because they have essentially the same 
architectural features for exploiting parallelism: shared 
memory address spaces, a multilevel memory hierarchy, and 
vector units for regular data parallelism. The U2U and D2D 
remain sequential in our current implementation, though 
they could in principle be parallelized using rake and com-
press methods.14

Although the architectural features are similar between 
CPUs and GPUs, differences in their scale directly affect 
the algorithm and implementation. The main algorithmic 
tuning parameter for the FMM is the maximum number of 
particles per octant, q. Increasing q makes the leaf octants 
larger and the overall tree shorter, which in turn increases 
the number of flops performed by the compute-bound ULI, 
WLI, and XLI steps, while decreasing the flop-cost of the 
memory-bound VLI and other phases. Figure 3(a) shows 
an example of this behavior. A processor’s relative balance 
of performance and bandwidth will change these curves, 
thereby changing the optimal value of q.

Indeed, this phenomenon gives rise to the overall perfor-
mance behavior shown in Figure 3(b), where we compare 
the single-socket execution times for three single-socket 
implementations: (i) single-threaded CPU with explicit 
vectorization using SSE intrinsics; (ii) multithreaded CPU 
with four threads and SSE; and (iii) GPU using CUDA. Note 
that combined threading and vectorization yields a 7.4× 
improvement over the single-threaded code. The GPU 
code is 32× faster than the single-threaded CPU code and 
4.3× faster than the multithreaded CPU code, even includ-
ing time to send/receive data from the GPU. Interestingly, 
the GPU win comes not just from parallelization and tun-
ing but because faster processing enables better algorith-
mic tuning of q. In particular, the faster we can perform 
the compute-intensive ULI step, the larger we can make q 
thereby reducing the VLI and other memory-bound steps. 
In other words, there is a synergy between faster process-
ing and algorithmic tuning in which we can trade more 
flops (ULI step) for less memory communication (e.g., VLI 
step). Such techniques are likely to apply more generally as 
many-core processors increase in use.

5. NUMERICAL EXPERIMENTS
This section evaluates the overall scalability of our imple-
mentation on two different architectures and in both strong 
and weak scaling regimes. (We have used the Stokes kernel 
instead of the Laplacian. K(r) is defined as 1/|r|(1 − r ⊗ r)/
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r2), where ⊗ is the outer product between two three-dimen-
sional vectors.)

Platforms and architectures: We tested our code on two 
supercomputing platforms, one based on conventional 
CPUs and the other based on hybrid CPU+GPU nodes. 
The CPU system is Jaguar PF at the National Center for 
Computational Sciences (UT/ORNL), (http://www.nccs.
gov/computing-resources/jaguar/) a Cray XT5 with 224,256 
cores (using 2.6- GHz hex-core AMD Opteron CPUs, 2GB/
core), and a three-dimensional-torus network (9.6  GB/s link 
bandwidth). Jaguar is ranked third on the Top 500 List (www.
top500.org) as of June 2011. The GPU system is the Keeneland 
initial delivery system, also at UT/ORNL (http://keeneland.
gatech.edu). Keeneland is based on the Hewlett-Packard 
SL390 servers accelerated with NVIDIA Tesla M2070 GPUs. 
Keeneland has 120 compute nodes, each with dual-socket, 
six-core Intel X5660 2.8- GHz Westmere processors and 3 
GPUs per node, with 24GB of DDR3 host memory. Nodes are 
interconnected with single rail QDR Infiniband.

MPI, strong scalability tests on Jaguar: Figure 4(a) 
summarizes the strong scaling experiments. The prob-
lem has 100 million unknowns. We use a nonuniform 
(line) distribution. On 24,576 cores, the evaluation phase 
takes just 1.7 s, which constitutes a speedup of 205× when 
increasing cores by a factor of 512×. The setup phase 
(tree construction) begins to dominate at this scale in the 
strong-scaling regime.

MPI, weak scalability tests on Jaguar: Figure 4(b) summa-
rizes the weak scaling results. The problem size per core is 
kept fixed to approximately 672,000 unknowns. The  FMM 
evaluation phase and setup phase (tree construction) times 

increase because of several factors. First, since we have 
highly nonuniform distributions (the max leaf-level is 23 
and the min is 4—for a uniform tree, the leaf level would 
be 9), as we increase the problem size, the tree gets deeper 
and the cost per core increases (i.e., we observe a O(N log N) 
scaling), as we have not reached the asymptotic O(N) phase 
of the FMM. Secondly, for nonuniform trees, it is difficult to 
load balance all phases of FMM. The solution to these scal-
ing problems is to employ the hypercube-like tree-broadcast 
algorithm for all of the phases of FMM. (Currently it is used 
only in the postorder communication phase of the evalua-
tion phase.) Finally, the setup phase is not multithreaded, 
which is the subject of future work. Nevertheless, we still 
attain a reasonably good utilization of compute resources: 
the evaluation phase sustains over 1.2 GFlopsper core (in 
double-precision).

GPU strong scalability tests on Keeneland: Figure 5 shows 
strong scaling for a 48 million particle problem on up to 192 
GPUs of the Keeneland system. We use 1 MPI process per 
GPU and 3 GPUs per node (64 nodes total). In the best case, 
the evaluation completes in just 0.47 s. For comparison, we 
estimate that the equivalent purely direct (O(n2) ) calculation 
on 192 GPUs, ignoring all communication, would require 
approximately 1000× more wall clock time, which confirms 
the importance of employing parallelism on an algorithmi-
cally optimal method.

6. DISCUSSION AND CONCLUSION
We have presented several algorithms that taken together 
expose and exploit concurrency at all stages of the fast mul-
tipole algorithms and employ several parallel programming 

Figure 3. Intra-node optimization. (a) Optimal particles per octant: increasing the leaf sizes increases the relative costs of ULI, WLI, and XLI 
while decreasing the costs of the other phases. (b) Implementation comparison: solid horizontal bars indicate the observed wall-clock time 
on each platform. In the hybrid CPU+GPU implementation, ULI runs on the GPU while the other steps run on the CPU, yielding an overall 
benefit from overlapping.
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Figure 5. GPU strong scaling. We show strong scaling for FMM 
evaluation of 48 million particles on up to 192 GPUs of Keeneland 
system, which completes in as few as 0.47 s. The solid point-line 
shows the measured wall-clock time, and the dashed line shows 
the ideal time under perfect speedup. Each point is labeled by its 
parallel efficiency (ideal = 1).
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paradigms. We showed that we can efficiently scale the tree 
setup with the major cost being the parallel sort, which in 
turn exhibits textbook scalability. We described a new reduc-
tion scheme for the FMM algorithm and we demonstrated 
overall scalability. We explored per-core concurrency using 
the streaming paradigm on GPU accelerators with excel-
lent speedups. FMM is a highly nontrivial algorithm with 
several different phases, a combination of multiresolution 
data structures, fast transforms, and highly irregular data 
access. Yet, we were able to achieve significant speedups on 
heterogeneous architectures.

On our largest run on 196,608 cores, we observed about 
220 TFlops/s in the evaluation, about 15% of the Linpack 
sustained performance. Assuming a 7× speedup on a 
hybrid machine of similar size means that our FMM would 
exceed one PetaFlop without further modifications. Our 
main conclusion is that it is possible to construct highly 
efficient scalable N-body solvers, at least up to hundreds of 
thousands of cores. But what about one million or many 
million cores?

One important lesson for us is that hybrid parallelism is 
absolutely necessary; once we reached several thousands 
of MPI processes, MPI resource management in the com-
munication-intensive phases of the algorithm became 
an issue. Employing shared memory parallelism within 
the socket and combining with accelarators results in a 
more scalable code. The maintainability overhead, how-
ever, can be significant especially for the GPU case and for 

Figure 4. Strong and weak scalability on Jaguar PF. (a) Strong Scaling on Jaguar PF. The strong scalability result for 22M particles. Each 
bar is labeled by its absolute wall-clock time (seconds) and speedup relative to the 48-core case. There are six cores (and six OpenMP 
threads) per MPI process. The finest level of the octree is nine and the coarsest is three. The evaluation and setup phases show 205× and 
48×  speedups, respectively, when increasing the core count by 512×. (b) Weak Scaling on Jaguar PF. The weak scalability of the simulation to 
196,608 cores, with approximately 672,000 unknowns per core. Each bar is labeled by wall-clock time (seconds) and parallel efficiency. We 
use one MPI process per socket and all of the six OpenMP threads in each MPI process. The finest to coarsest octree levels range from 24 to 
4. Our implementation maintains parallel efficiency levels of 60% or more at scale.
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a complex code like FMM. Currently, we are working on 
introducing shared-memory parallelism in the tree con-
struction, sharing the workload between CPUs and GPUs 
(essentially treating the GPU as another MPI process), and 
introducing shared-memory parallelism in the upward 
and downward computations.
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