
may 2012 | vol. 55 | no. 5 | communications of the acm 101

doi:10.1145/2160718.2160740

A Massively Parallel Adaptive
Fast Multipole Method on
Heterogeneous Architectures
By Ilya Lashuk, Aparna Chandramowlishwaran, Harper Langston, Tuan-Anh Nguyen, Rahul Sampath,
Aashay Shringarpure, Richard Vuduc, Lexing Ying, Denis Zorin, and George Biros

Abstract
We describe a parallel fast multipole method (FMM) for
highly nonuniform distributions of particles. We employ
both distributed memory parallelism (via MPI) and shared
memory parallelism (via OpenMP and GPU acceleration) to
rapidly evaluate two-body nonoscillatory potentials in three
dimensions on heterogeneous high performance comput-
ing architectures. We have performed scalability tests with
up to 30 billion particles on 196,608 cores on the AMD/
CRAY-based Jaguar system at ORNL. On a GPU-enabled sys-
tem (NSF’s Keeneland at Georgia Tech/ORNL), we observed
30× speedup over a single core CPU and 7× speedup over a
multicore CPU implementation. By combining GPUs with
MPI, we achieve less than 10 ns/particle and six digits of
accuracy for a run with 48 million nonuniformly distributed
particles on 192 GPUs.

1. INTRODUCTION
N-body problems are the computational cornerstone of
diverse problems in mathematical physics,16 machine learn-
ing,8 and approximation theory.4 Formally, the problem is
how to efficiently evaluate

	 � (1)

which is essentially an O(N2) computation of all pairwise
interactions between N particles. We refer to f as the “poten-
tial,” s as the “source density,” x as the coordinates of the
target particles, y as the coordinates of the source parti-
cles, and K as the interaction kernel. For example, in elec-
trostatic or gravitational interactions K(x, y) = K(r) =  with
r = x − y and |r| its Euclidean norm. Equation (1) expresses
an N-body problem.

The challenge is that the O(N2) complexity makes the
calculation prohibitively expensive for problem sizes of
practical interest. For example, understanding blood flow
mechanics21 or understanding the origins of the universe26
requires simulations in which billions of particles interact.

Given the importance of N-body problems, there has
been a considerable effort to accelerate them. Here is the
main idea: the magnitude and variance of K(r) decay with
|r|, and so when the particles or groups of particles are well
separated, the interactions can be approximated with small
computational cost. But the details are tricky. How can we
perform the approximation? Can we provide rigorous error

and complexity bounds? And how do we implement these
approximations efficiently?

One of the first successful attempts toward fast schemes
was the Barnes–Hut method1 that brought the complexity
down to O(N log N). Greengard and Rokhlin3, 10, 22 solved the
problem. They introduced the fast multipole method (FMM)
that uses a rapidly convergent approximation scheme that
comes with rigorous error bounds and reduces the overall
complexity (in three dimensions) to O(log(1/)3N), where
 is the desired accuracy of the approximation to the exact
sum. This result is impressive: we can evaluate the sum in
Equation (1) in arbitrary precision in linear time.

So how does FMM work? Here is a sketch. Given the posi-
tions of particles for which we want to compute all pairwise
interactions, we build an octree (henceforth we just consider
FMM in three dimensions) so that any leaf node (or octant)
has approximately a prescribed number of particles; then
we perform tree traversals to evaluate the sum. We perform
a postorder (bottom-up) traversal followed by a preorder tra-
versal (top-down). The postorder traversal consists of calcu-
lations that involve an octant and its children. The preorder
traversal is more complex, as it involves several octants in a
neighborhood around the octant being visited.

At this level of abstraction, we begin to see how we might
parallelize the FMM. When the distribution of particles is
uniform, the analysis is relatively straightforward: we per-
form the traversals in a level-by-level manner, using data
parallelism across octants in each level. The longest chain of
dependencies is roughly O(log N). The challenge lies in the
case of nonuniform particle distributions, in which even the
sequential case becomes significantly more complicated.3

Summary of the method: We describe and evaluate an
implementation of the FMM for massively parallel distrib-
uted memory systems, including heterogeneous architec-
tures based on multicore CPU and GPU co-processors. We
use the message passing interface (MPI) for expressing
distributed memory parallelism, and OpenMP and CUDA
for shared memory and fine-grain parallelism. There exist
many variants of FMM, depending on the kernel and the

The original version of this paper has the same title and
was published in the 2009 Proceedings of the Conference
on High Performance Computing Networking, Storage and
Analysis. Some results in this paper also appeared in
Reference Rahimian et al, 2010.

102 communications of the acm | may 2012 | vol. 55 | no. 5

research highlights

interaction approximation scheme. Our implementation
is based on the kernel-independent FMM.28, 29 However, this
choice affects only the construction of certain operators
used in the algorithm. It does not affect the overall “flow”
of the algorithm or its distributed-memory parallelization.
(It does affect single-core performance as vectorization and
fine-grain parallelism depend on the FMM scheme.)

Our parallel algorithm can be summarized as follows.
Given the particles, distributed in an arbitrary way across
MPI processes, and their associated source densities, we
seek to compute the potential at each point. (For simplic-
ity, in this paper, we assume that source and target points
coincide.) First, we sort the points in Morton order,24 a kind
of space-filling curve, and then redistribute them so that
each process owns a contiguous chunk of the sorted array.
Second, we create the so-called locally essential tree (LET,
defined in Section 3), for each process in parallel. Third, we
evaluate the sums using the LETs across MPI processes and
using GPU and OpenMP acceleration within each process.
All the steps of the algorithm are parallelized, including tree
construction and evaluation.

Related work: There is a considerable literature on par-
allel algorithms for N-body problems. A work–depth analy-
sis of the algorithm gives O(N) work and O(log N) depth for
particle distributions that result in trees that have depth
bounded by O(log N). Greengard and Gropp analyzed and
implemented the algorithm using the concurrent-read,
exclusive-write (CREW) PRAM model for the case of uniform
particle distributions.9 The implementation is straightfor-
ward using level-by-level traversals of the tree and using data
parallelism. The complexity of the algorithm, omitting the
accuracy-related term, is O(N/p) + O(log p), where p is the
number of threads. This result extends to message passing
implementations.

The implementation, parallel scalability, and complexity
analysis become harder when one deals with nonuniform
distributions of particles. Callahan and Kosaraju2 propose
an exclusive read exclusive write (EREW)-PRAM algorithm
with p = N processors which is work optimal, takes log p time,
and does not depend on the distribution of the points. To our
knowledge, that algorithm has not been used in practice. Our
algorithm uses many ideas that first appeared in the seminal
work of Warren and Salmon, who introduced space-filling
curves using Morton-ordering for partitioning the points
across processors, the notion of local essential trees (LET),
and a parallel tree construction algorithm.27 These ideas
were widely adopted and analyzed in other works.7, 23

Teng was the first to provide a complexity analysis that
accounts for communication costs for particle distributions
whose tree depth is bounded by log N (in finite floating point
precision, all particle distributions satisfy this assump-
tion).25 The key idea is to build a communication graph in
which graph nodes correspond to tree octants and edges to
interactions between octants. Teng shows that FMM com-
munication graphs have a bisector whose edge cut (in three
dimensions) is bounded by O(N2/3(log N)4/3); to compare,
the bisector for a uniform grid is O(N2/3). This result shows
that scalable FMM calculations are theoretically possible.
Teng outlines a divide-and-conquer parallel algorithm to

construct and partition the tree. Morton-order sorting is
used to build the tree and repartitioning is done using a geo-
metric graph partitioning method that guarantees low edge-
cut and good load balancing.18 Assuming (1) a parallel radix
sort is used to partition the points and (2) the depth of the
FMM tree grows logarithmically with N, the overall algorithm
scales as O(N/p) + O(log p). The constants in the complexity
estimates involve flop rate, memory latency, and bandwidth
parameters of the underlying machine architecture.

Work that is focused more on actual implementations
and performance analysis includes Kurzak and Pettitt15
and Ogata et al.19 Several groups have been working on
GPU acceleration.5, 11, 12, 20, 30 Finally, for nearly uniform
distributions of particles, one can use fast Fourier trans-
forms (particle-in-cell methods) to calculate the sums in
O(N log N) time.

Contributions: To our knowledge, there are no FMM
implementations that demonstrate scalability on thousands
of MPI processes for highly nonuniform particle distribu-
tions. Our main contribution is to produce and demonstrate
the scalability of such an implementation that exploits all
levels of parallelism. In Section 3, we discuss the distributed
memory parallelism and introduce a novel FMM-specific all-
reduce algorithm that uses hypercube routing. In Section 4,
we introduce the shared memory parallelism of our imple-
mentation, and in Section 5, we discuss our experiments
and the scalability results.

2. OUTLINE OF FMM
In this section, we describe the FMM data structures, the
main algorithmic steps, and the parallel scalability of the
method. Without loss of generality for the rest of the paper,
we assume that the source particles yj and the target par-
ticles xi coincide. The FMM tree construction ensures that
every leaf octant contains no more than q particles. The
sequential algorithm is simple: the root octant is chosen to
be a cube that contains all the particles; we insert the par-
ticles in the tree one by one; we subdivide an octant when it
contains more than q particles. The parallel construction is
more involved, and we describe it in Section 3.

After the tree construction, for each octant b we need
to construct its interaction lists. These lists contain other
octants in the tree. Each list represents a precisely defined
spatial neighborhood around b, and for every list we have to
compute “interactions” between b and the octants in that
list. By “interactions,” we refer to floating point operations
that correspond to matrix–matrix or matrix–vector multipli-
cations. Once the interaction lists have been constructed, the
tree is traversed twice: fist bottom-up and then top-down. In
each traversal for each octant, we perform calculations that
involve other octants in its interaction lists.

One difficulty in FMM codes is the efficient math-
ematical representation and implementation of the
octant–octant interaction matrices so that we achieve algo-
rithmic efficiency without compromising accuracy. The size
of the matrices varies, but typical dimensions are 100–1000,
depending on the implementation. FMM algorithm design-
ers seek to reduce the size of the matrices, to employ sym-
metries to reduce storage needs, to use precomputation,

may 2012 | vol. 55 | no. 5 | communications of the acm 103

and to use fast approximations (e.g., fast Fourier transforms
or low-rank singular value decompositions). All we need to
remember here is that once we fix the desired accuracy, the
computation of the interactions between an octant b and the
octants in its interaction lists can be completed in O(1) time.

Now let us give the precise definition of these lists. For
each octant b in the tree, we create four lists of octants, the
so-called U-, V-, W- and X-list.3 The U-list is defined only for
leaf octants. For a leaf octant b, the U-list of b consists of all
leaf octants adjacent to b, including b itself. (We say that a is
adjacent to b if b and a share a vertex, an edge, or a face.) For
any octant b, its colleagues are defined as the adjacent octants
that are in the same tree level. The V-list of an octant b (leaf
or non-leaf) consists of those children of the colleagues of b’s
parent octant, P(b), which are not adjacent to b. The W-list
is only created for a leaf octant b and contains an octant a
if and only if a is a descendant of a colleague of b, a is not
adjacent to b, and the parent of a is adjacent to b. The X-list of
an octant b consists of those octants a which have b on their
W-list. These definitions are summarized in Table 1.

For each octant b ∈ T, we store its level  and two vectors,
u and d. The u vector is an approximate representation of the
potential generated by the source densities inside b. This
representation is sufficiently accurate only if the evaluation
particle is outside the volume covered by b and the colleagues
of b. For the u vector we will use the name “upward equiva-
lent density” or simply “upward density.” This terminology
is motivated by Ying et al.28, 29

The d vector is an approximate representation of the
potential generated by the source densities outside the volume
covered by b and colleagues of b. This approximate representa-
tion is sufficiently accurate only if the evaluation particle is
enclosed by b. For the d vector we will use the name “down-
ward equivalent density” or simply “downward density.”
For leaf octants (b ∈ L), we also store x, s, and f. Given the above

definitions, approximately evaluating the sum in Equation
(1) involves an upward computation pass of T, followed by a
downward computation pass of T, seen more specifically in
Algorithm 1. Let us reiterate that the details of the “inter-
act” step in Algorithm 1 depend on list type and the under-
lying FMM scheme.

2.1. Parallelizing the evaluation phase
Understanding the dependencies in Algorithm 1 and devis-
ing efficient parallel variants can be accomplished by
using distributed and shared memory programming mod-
els. These models can then be implemented using MPI,
OpenMP, and GPU application programming interfaces.

There are multiple levels of concurrency in FMM: across
steps (e.g., the S2U and ULI steps have no dependencies),
within steps (e.g., a reduction on octants of an octant b dur-
ing the VLI step), and vectorizations of the per-octant calcu-
lations. In fact, one can pipeline the S2U, U2U, and VLI steps
to expose even more parallelism. We do not take advantage
of pipelining because it reduces the modularity and general-
ity of the implementation.

The generic dependencies of the calculations outlined in
Algorithm 1 are as follows: The Approximate Interactions
(except for steps (5a) and (5b) ) and Direct Interactions
parts can be executed concurrently. For the approximate
interaction calculations, the order of the steps denotes
dependencies, for example, step (2) must start after step (1)
has been completed. Steps (3a) and (3b) can be executed in
any order. However, concurrent execution of steps (3a) and
(3b) requires a concurrent write with accumulation. This is
also true for the steps (5a) and (5b), they are independent up
to concurrent writes.

Table 1. Notation. Here we summarize the main notation used to
define the interaction lists for each octant in the FMM tree. (The
symbol “\” denotes standard set exclusion.) Note that a ŒW(b) need
not be a leaf octant; conversely, since W(b) exists only when b Œ L,
a ŒX(b) implies that a Œ L. We say that a is adjacent to b if b and a
share a vertex, an edge, or a face. See Figure 1 for an example of the
U, V, W, and X lists in two dimensions.

a, b Octants in the FMM tree
 FMM tree level
q Maximum number of particles/octant

Octant lists
T The FMM tree
L All leaf octants
P(b) Parent octant of b (/0 for root of T )
A(b) All ancestor octants of b
K(b) The eight children octants of b (/0 for b Î T )
D(b) All descendant octants of b in T
C(b) (colleagues) Adjacent octants to b, same level
J(b) Adjacent octants to b (arbitrary level)
U-list: a Î U(b) a Î L adjacent to b (note: b Î U(b))
V-list: a Î V(b) a Î K(C(P(b) ) )\C(b)
W-list: a Î W(b) a Î D(C(b) )\J(b), P(a) Î J(b)
X-list: a Î X(b) iff b Î W(a)

I(b) (interaction) V(b) ∪ U(b) ∪ W(b) ∪ X(b)

V

V

V

V

V V

V V

X

V

V

U

U

W W

U
W W
U U

WW

W
WW
WU

B U

X

U

U U

V V

V

V

V

V

Figure 1. FMM lists. Here we show an example of the U, V, W, and X
lists in two dimensions for a tree octant B. One can verify that I(B) is
inside the domain enclosed by C(P(B) ).

104 communications of the acm | may 2012 | vol. 55 | no. 5

research highlights

Algorithm 1.

// APPROXIMATE INTERACTIONS
// (1) S2U: source-to-up step
  ∀b ∈ L : source to up densities interaction
// (2) U2U: up-to-up step (upward)
  Postorder traversal of T
  ∀b ∈ T : interact(b, P(b ))
// (3a) VLI : V-list step
  ∀b ∈ T : ∀a ∈ V(b ) interact(b, a);
// (3b) XLI : X-list step
  ∀b ∈ T : ∀a ∈ X(b ) : interact(b, a);
// (4) D2D: down-to-down step (downward)
  Preorder traversal of T
  ∀b ∈ T : interact(b, a);
// (5a) WLI: W-list step
  ∀b ∈ L : ∀a ∈ W(b ) : interact(b, a);
// (5b) D2T : down-to-targets step
  ∀b ∈ L : evaluate potential on xi ∈ b;

//DIRECT INTERACTIONS
// ULI: U-list step (direct sum)
  ∀b ∈ L : ∀a ∈ Ub : interact(b, a);

Our overall strategy is to use MPI-based distributed mem-
ory parallelism to construct the global tree and to partition
it into overlapping subtrees (the LETs) in order to remove
dependencies between steps (3a)/(5a) and (3b)/(5b). We handle
the concurrent writes explicitly and we use shared-memory-
based parallelism on GPUs within each MPI process to
accelerate the direct interactions and steps (1), (3), (5) of the
indirect interactions in Algorithm 1. In the following sec-
tions, we give the details of our approach.

3. DISTRIBUTED MEMORY PARALLELISM
The main components of our scheme are (1) the tree
construction, in which the global FMM tree is built and each
process receives its locally essential tree and a set of leaves
for which it assumes ownership and (2) the evaluation, in
which each process evaluates the sum at the particles of the
leaf octants it owns. This sum has two components: direct
interactions (evaluated exactly) and indirect interactions
(evaluated approximately).

The input consists of the particles and their source den-
sities. The output of the algorithm is the potential at the
particles. Before we describe the algorithm, we need the fol-
lowing definition:27

Locally essential tree (LET): Given a partition of L across
processes so that Lk is the set of leaf-octants assigned to the
process k (i.e., the potential in these octants is computed by
process k), the LET for process k is defined as the union of
the interaction lists of all owned leaves and their ancestors:

The basic idea27 for a distributed memory implementa-
tion of the FMM algorithm is to partition the leaves of the FMM
tree across processes, construct the LET of each process,
and then compute the N-body sum in parallel. There are two
communication-intensive phases in this approach: the first

phase is the LET construction and the second phase is an all-
reduce during evaluation. Next, we discuss the main compo-
nents in these two phases.

3.1. Tree construction
The inputs for the tree construction procedure are the
particles. The output is the local essential tree on each
process, which is subsequently used in the computation,
along with geometrical domain decomposition of the unit
cube across MPI processes. The latter is used throughout
the algorithm. The tree construction involves (1) the con-
struction of a distributed linear complete octree that con-
tains only the leaf octants and (2) the construction of the
per-process LETs.

We start by creating the distributed and globally Morton-
sorted array containing all the leaves from the global tree.
The algorithms for this task are known (we use the one
described in Sundar et al.;24 see also Hariharan and S.
Aluru13), and their main ingredient is the parallel Morton-
sort of particles. This sort determines the overall complexity
of the tree construction.

The distribution of the leaves between processes induces
a geometric partitioning of the unit cube: each process con-
trols the volume covered by the leaves it owns. By Wk, we will
denote the region “controlled” by process k. Each process
stores the overall geometric partitioning: we use an MPI_
AllGather to exchange the first and last octants of their
region, which is all is needed to define the partition.

Next, each process adds all ancestor octants to its local
leaves, thus creating a local tree. The task of exchanging
information about “ghost” octants still remains to be com-
pleted. To accomplish that, let us introduce the following
definitions:

•  “Contributor” processes of an octant b ∈ T:
Pc(b ) := k ∈ 1 . . . p : b overlaps with Wk

•  “User” processes of an octant b:
Pu(b ) := k ∈ 1 . . . p : P(b ) or C(P(b )) overlaps with Wk.

Let Ikk′ be the set of octants to which process k contributes
and which process k′ uses. Then, process k must send all
octants in Ikk′ to MPI process k′. Figure 2 provides an illus
tration of this procedure. That is, each process contributor of
each octant sends the octant data to all users of that octant.
Once the exchange of the Ikk′ lists has been completed, all
MPI processes insert received octants into their local trees.
This concludes the construction of the per-process LETs.
We summarize the construction of the local essential trees
in Algorithm 2.

The correctness of the construction is based on the
direct relation between LET and FMM. Consider the poten-
tial generated by the sources enclosed by some octant b.
In order to evaluate this potential outside the volume cov-
ered by C(P(b ) ), one does not need information regard-
ing sources or upward densities associated with b, since
the upward density of some ancestor of b would be used
instead. This observation can be used to formalize the cor-
rectness of the LET construction. See Lashuk et al.17 for a
more detailed discussion.

may 2012 | vol. 55 | no. 5 | communications of the acm 105

Algorithm 2. LET construction

Input: distributed set of particles x;
Output: LET on each process k

1. Lk = Points20ctree(x)			 //MPI
2. Bk = Lk ∪ A(Lk)
3. Ikk′ := {b Î Bk : P(b) or C(P(b) ) overlaps with Ωk′}
4. "k¢ : k¢ ¹ k

  Send Ikk ′ to process k¢			 //MPI
  Recv Ik′k from process k¢			 //MPI
  Insert Ik′k in Bk

5. Return Bk

In the last step of Algorithm 2, every process indepen-
dently builds U, V, W, and X lists for the octants in its LET
which enclose the local particles (where the potential is to be
evaluated). All necessary octants are already present in the
LET, so no further communication is required in this step.

3.2. Load balancing
Assigning each process an equal chunk of leaves may lead to
a substantial load imbalance during the interaction evalua-
tion for nonuniform octrees. In order to overcome this dif-
ficulty, we use the following load-balancing algorithm.

After the LET setup, each leaf is assigned a weight, based
on the computational work associated with its U, V, W, and
X lists (which are already built at this particle). Then, we
repartition the leaves to ensure that total weight of the leaves
owned by each process is approximately equal. We use
Algorithm 1 from Sundar et al.24 to perform this repartition-
ing in parallel. Note that similarly to the previous section,
each process gets a contiguous chunk of global (distributed)
Morton-sorted array of leaves. In the final step, we rebuild
the LET and the U, V, W, and X lists on each process.

Note that we repartition the leaves based solely on
work balance ignoring the communication costs. Such an
approach is suboptimal, but is not expensive to compute
and works reasonably well in practice. In addition to leaf-
based partitioning, the partitioning at a coarser level can
also be considered;25 we have not tested this approach.

3.3. FMM evaluation
Three communication steps are required for the potential
evaluation. The first is to communicate the source densities
for the U-list calculation. This communication is “local” in a
sense that each process typically communicates only with its
spatial neighbors. Thus, a straightforward implementation
(say, using MPI_Isend) is acceptable.

The second communication step is to sum up the upward
densities of all the contributors of each octant, the U2U step.
During this step (bottom-up traversal), each process only
builds partial upward densities of octants in its LET. The
partial upward densities of an octant do not include contribu-
tions from descendants of the octant that belong to other MPI
processes. For this reason, we need a third step, a communi-
cation step, to collect the upward densities to the users of
each octant. This communication step must take place after
the U2U step and before the VLI and XLI steps. Once this step
is completed, every process performs a top-down traversal of
its LET without communicating with other processes.

Algorithm 3 describes a communication procedure that
combines the second and the third steps mentioned above.
This algorithm resembles the standard “AllReduce” algo-
rithm on a hypercube. What follows is the informal descrip-
tion of the algorithm.

At the start, each processor r forms a pool S of octants
(and their upward densities) which are “shared”, that is, not
used by r alone. The MPI communicator (set of all MPI pro-
cesses) is then split into two halves (for simplicity, we shall
assume that the communicator size is a power of two) and
each processor from the first half is paired with a “peer” pro-
cessor from the other half.

Now consider those octants in S which are “used” by
some processor from the other half of the communica-
tor (not necessarily a peer of r). If such octants exist, r
sends them (together with upward densities) to its “peer”.
According to the same rule, the “peer” will send some (pos-
sibly none) octants and densities to r. The received octants
will be merged into S, eliminating duplicate octants while
summing densities for duplicate octants.

At this point, no further communication between the
two halves is required, and the algorithm proceeds recur-
sively by applying itself to each of the halves. We finally note
that after each communication round, S is purged from the
“transient” octants which are no longer necessary for com-
munications and not used locally at r.

The time complexity of this algorithm is not worse than .
To be more specific, assuming that no process uses more than
m shared octants and no process contributes to more than m
shared octants, for a hypercube interconnect, the communi-
cation complexity of Algorithm 3 is ,
where ts and tw are the latency and the bandwidth constants,
respectively. See Lashuk et al.17 for a proof.

After the three communication steps, all the remain-
ing steps of Algorithm 1 can be carried out without further
communication.

3.4. Complexity for uniform distributions of particles
We have all the necessary ingredients to derive the overall
complexity of the distributed memory algorithm for uniform

1

22

(a)

1

22

(b)

Figure 2. Communication of ghost octants. Process 0 sends green
octants to process 1, red octants to process 2, and brown octants
to both 1 and 2. White octants in lower-left corner are “internal” to
process 0 and not sent to anyone. The procedure is applied to both
leaves and non-leaf octants. (a) Finer level of octree. (b) Coarser
level of octree.

106 communications of the acm | may 2012 | vol. 55 | no. 5

research highlights

distributions of particles. Let N be the number of particles
and let p be number of processes. The number of octants is
proportional to the number of particles. The first commu-
nication cost is associated with the parallel sort of the input
particles. We have used a comparison sort instead of bin-
ning, so its time complexity is (combina-
tion of sample sort and bitonic sort).6 Exchanging the “ghost”
octants has the same complexity as the reduce-broadcast
algorithm described in Section 3.3, that is, , where m
is the maximal number of “shared” octants between two pro-
cesses. For a uniform grid, m can be estimated as O( (N/p)2/3)
divided by p. The communication also includes the exchange
of source densities. Assuming that the bandwidth of the sys-
tem is reasonably high, we can neglect all lower order com-
munication terms. In summary (assuming large enough
bandwidth but assuming nothing about latency), the overall
complexity of the setup phase is . For
the evaluation, we have .

Algorithm 3. Reduce and Scatter

Input: partial upward densities of “shared” octants at “contrib-
utor” processes
Input: r (rank of current process); assume communicator size
is 2d

Output: upward densities of “shared” octants at “user”
processes

//Define shared octants (for each process):
S = {b ∈ LET : #(Pu(b) ∪ Pc(b ) ) > 1}
//Loop over communication rounds (hypercube dimensions)
For i := d − 1 to 0
  //Process s is our partner during this communication round
  1. s := r XOR 2i

  2. us = s AND (2d − 2i)
  3. ue = s OR (2i − 1)
  4. Send to s :
  5. qs = r AND (2d − 2i)
  6. qe = r OR (2i − 1)
  7. Delete
  //Reduction
  8. Recv from s and append S
  9. Remove duplicates for S
  10. Sum up densities for duplicate octants.

For a nonuniform particle distribution, the complexity
estimates for the setup and evaluation phases include an
additional term. Since we do not have a (nontrivial)
bound on m, this result is worse than what is theoretically
possible by Teng’s algorithm. (He partitions the tree using
both work and communication costs instead of just using
the work at the leaf octants.)

4. INTRA-NODE PARALLELISM
A key ingredient to the efficiency of the overall algo-
rithm is highly tuned intra-node performance. Many
current supercomputing systems have heterogeneous
nodes, meaning they have both conventional general-
purpose multicore CPU processors and more specialized

high-speed co-processors, such as GPUs. Consequently,
our implementation can exploit both CPUs (via OpenMP)
and GPUs (via CUDA).

Shared memory parallelization is common for either
type of processor. For the S2U, D2T, ULI, WLI, VLI, and XLI
steps, we can visit the octants in an embarrassingly parallel
way. Moreover, all octant visits include octant-to-octant or
octant-to-particle interactions expressed as matrix–vector
multiplications. The matrices are dense except for the VLI
calculations, which correspond to a diagonal translation.
Thus, overall there are two levels of parallelism: across
octants and across the rows of the corresponding matrix.
The same approach to parallelism applies on both CPU and
GPU co-processors, because they have essentially the same
architectural features for exploiting parallelism: shared
memory address spaces, a multilevel memory hierarchy, and
vector units for regular data parallelism. The U2U and D2D
remain sequential in our current implementation, though
they could in principle be parallelized using rake and com-
press methods.14

Although the architectural features are similar between
CPUs and GPUs, differences in their scale directly affect
the algorithm and implementation. The main algorithmic
tuning parameter for the FMM is the maximum number of
particles per octant, q. Increasing q makes the leaf octants
larger and the overall tree shorter, which in turn increases
the number of flops performed by the compute-bound ULI,
WLI, and XLI steps, while decreasing the flop-cost of the
memory-bound VLI and other phases. Figure 3(a) shows
an example of this behavior. A processor’s relative balance
of performance and bandwidth will change these curves,
thereby changing the optimal value of q.

Indeed, this phenomenon gives rise to the overall perfor-
mance behavior shown in Figure 3(b), where we compare
the single-socket execution times for three single-socket
implementations: (i) single-threaded CPU with explicit
vectorization using SSE intrinsics; (ii) multithreaded CPU
with four threads and SSE; and (iii) GPU using CUDA. Note
that combined threading and vectorization yields a 7.4×
improvement over the single-threaded code. The GPU
code is 32× faster than the single-threaded CPU code and
4.3× faster than the multithreaded CPU code, even includ-
ing time to send/receive data from the GPU. Interestingly,
the GPU win comes not just from parallelization and tun-
ing but because faster processing enables better algorith-
mic tuning of q. In particular, the faster we can perform
the compute-intensive ULI step, the larger we can make q
thereby reducing the VLI and other memory-bound steps.
In other words, there is a synergy between faster process-
ing and algorithmic tuning in which we can trade more
flops (ULI step) for less memory communication (e.g., VLI
step). Such techniques are likely to apply more generally as
many-core processors increase in use.

5. NUMERICAL EXPERIMENTS
This section evaluates the overall scalability of our imple-
mentation on two different architectures and in both strong
and weak scaling regimes. (We have used the Stokes kernel
instead of the Laplacian. K(r) is defined as 1/|r|(1 − r ⊗ r)/

may 2012 | vol. 55 | no. 5 | communications of the acm 107

r2), where ⊗ is the outer product between two three-dimen-
sional vectors.)

Platforms and architectures: We tested our code on two
supercomputing platforms, one based on conventional
CPUs and the other based on hybrid CPU+GPU nodes.
The CPU system is Jaguar PF at the National Center for
Computational Sciences (UT/ORNL), (http://www.nccs.
gov/computing-resources/jaguar/) a Cray XT5 with 224,256
cores (using 2.6- GHz hex-core AMD Opteron CPUs, 2GB/
core), and a three-dimensional-torus network (9.6  GB/s link
bandwidth). Jaguar is ranked third on the Top 500 List (www.
top500.org) as of June 2011. The GPU system is the Keeneland
initial delivery system, also at UT/ORNL (http://keeneland.
gatech.edu). Keeneland is based on the Hewlett-Packard
SL390 servers accelerated with NVIDIA Tesla M2070 GPUs.
Keeneland has 120 compute nodes, each with dual-socket,
six-core Intel X5660 2.8- GHz Westmere processors and 3
GPUs per node, with 24GB of DDR3 host memory. Nodes are
interconnected with single rail QDR Infiniband.

MPI, strong scalability tests on Jaguar: Figure 4(a)
summarizes the strong scaling experiments. The prob-
lem has 100 million unknowns. We use a nonuniform
(line) distribution. On 24,576 cores, the evaluation phase
takes just 1.7 s, which constitutes a speedup of 205× when
increasing cores by a factor of 512×. The setup phase
(tree construction) begins to dominate at this scale in the
strong-scaling regime.

MPI, weak scalability tests on Jaguar: Figure 4(b) summa-
rizes the weak scaling results. The problem size per core is
kept fixed to approximately 672,000 unknowns. The FMM
evaluation phase and setup phase (tree construction) times

increase because of several factors. First, since we have
highly nonuniform distributions (the max leaf-level is 23
and the min is 4—for a uniform tree, the leaf level would
be 9), as we increase the problem size, the tree gets deeper
and the cost per core increases (i.e., we observe a O(N log N)
scaling), as we have not reached the asymptotic O(N) phase
of the FMM. Secondly, for nonuniform trees, it is difficult to
load balance all phases of FMM. The solution to these scal-
ing problems is to employ the hypercube-like tree-broadcast
algorithm for all of the phases of FMM. (Currently it is used
only in the postorder communication phase of the evalua-
tion phase.) Finally, the setup phase is not multithreaded,
which is the subject of future work. Nevertheless, we still
attain a reasonably good utilization of compute resources:
the evaluation phase sustains over 1.2 GFlopsper core (in
double-precision).

GPU strong scalability tests on Keeneland: Figure 5 shows
strong scaling for a 48 million particle problem on up to 192
GPUs of the Keeneland system. We use 1 MPI process per
GPU and 3 GPUs per node (64 nodes total). In the best case,
the evaluation completes in just 0.47 s. For comparison, we
estimate that the equivalent purely direct (O(n2) ) calculation
on 192 GPUs, ignoring all communication, would require
approximately 1000× more wall clock time, which confirms
the importance of employing parallelism on an algorithmi-
cally optimal method.

6. DISCUSSION AND CONCLUSION
We have presented several algorithms that taken together
expose and exploit concurrency at all stages of the fast mul-
tipole algorithms and employ several parallel programming

Figure 3. Intra-node optimization. (a) Optimal particles per octant: increasing the leaf sizes increases the relative costs of ULI, WLI, and XLI
while decreasing the costs of the other phases. (b) Implementation comparison: solid horizontal bars indicate the observed wall-clock time
on each platform. In the hybrid CPU+GPU implementation, ULI runs on the GPU while the other steps run on the CPU, yielding an overall
benefit from overlapping.

PointsPerBox_str

(a) (b)

Ti
m

e
(s

)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

50 100 250 500 750

Step
ULI
WLI
XLI
VLI
Up
Down

Ti
m

e
(s

)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

89 s (1.0�)

12 s (7.4�)

2.8 s (32�)

CPU+SSE CPU+SSE+MT GPU

Step
Others
ULI

108 communications of the acm | may 2012 | vol. 55 | no. 5

research highlights

Figure 5. GPU strong scaling. We show strong scaling for FMM
evaluation of 48 million particles on up to 192 GPUs of Keeneland
system, which completes in as few as 0.47 s. The solid point-line
shows the measured wall-clock time, and the dashed line shows
the ideal time under perfect speedup. Each point is labeled by its
parallel efficiency (ideal = 1).

No. of GPUs (1 MPI task/GPU)

Ti
m

e
(s

)

10–1

100

101

102

1.0

0.91

0.76

0.60

0.60

0.52

0.55

3 6 12 24 48 96 192

paradigms. We showed that we can efficiently scale the tree
setup with the major cost being the parallel sort, which in
turn exhibits textbook scalability. We described a new reduc-
tion scheme for the FMM algorithm and we demonstrated
overall scalability. We explored per-core concurrency using
the streaming paradigm on GPU accelerators with excel-
lent speedups. FMM is a highly nontrivial algorithm with
several different phases, a combination of multiresolution
data structures, fast transforms, and highly irregular data
access. Yet, we were able to achieve significant speedups on
heterogeneous architectures.

On our largest run on 196,608 cores, we observed about
220 TFlops/s in the evaluation, about 15% of the Linpack
sustained performance. Assuming a 7× speedup on a
hybrid machine of similar size means that our FMM would
exceed one PetaFlop without further modifications. Our
main conclusion is that it is possible to construct highly
efficient scalable N-body solvers, at least up to hundreds of
thousands of cores. But what about one million or many
million cores?

One important lesson for us is that hybrid parallelism is
absolutely necessary; once we reached several thousands
of MPI processes, MPI resource management in the com-
munication-intensive phases of the algorithm became
an issue. Employing shared memory parallelism within
the socket and combining with accelarators results in a
more scalable code. The maintainability overhead, how-
ever, can be significant especially for the GPU case and for

Figure 4. Strong and weak scalability on Jaguar PF. (a) Strong Scaling on Jaguar PF. The strong scalability result for 22M particles. Each
bar is labeled by its absolute wall-clock time (seconds) and speedup relative to the 48-core case. There are six cores (and six OpenMP
threads) per MPI process. The finest level of the octree is nine and the coarsest is three. The evaluation and setup phases show 205× and
48× speedups, respectively, when increasing the core count by 512×. (b) Weak Scaling on Jaguar PF. The weak scalability of the simulation to
196,608 cores, with approximately 672,000 unknowns per core. Each bar is labeled by wall-clock time (seconds) and parallel efficiency. We
use one MPI process per socket and all of the six OpenMP threads in each MPI process. The finest to coarsest octree levels range from 24 to
4. Our implementation maintains parallel efficiency levels of 60% or more at scale.

No. cores

%
 T

im
e

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

110 s
(1.0�)

19 s
(5.7�)

4.0 s
(27�)

2.3 s
(48�)

349 s
(1.0�)

43 s
(8.0�)

6.2 s
(56�)

1.7 s
(205�)

459 s
(1.0�)

62 s
(7.3�)

10 s
(45�)

4.0 s
(115�)

48
(1�)

384
(8�)

3072
(64�)

24576
(512�)

Step
Evaluation Setup

No. cores

(a) (b)

Ti
m

e
(s

)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

56 s
(1.0)

67 s
(1.0)

77 s
(0.74)

75 s
(0.89)

93 s
(0.60)

100 s
(0.67)

123 s
(1.0)

152 s
(0.81)

193 s
(0.64)

24,576
(1�)

98,304
(4�)

196,608
(8�)

Step
Evaluation Setup

may 2012 | vol. 55 | no. 5 | communications of the acm 109

a complex code like FMM. Currently, we are working on
introducing shared-memory parallelism in the tree con-
struction, sharing the workload between CPUs and GPUs
(essentially treating the GPU as another MPI process), and
introducing shared-memory parallelism in the upward
and downward computations.

Acknowledgments
This work was supported in part by the U.S. National
Science Foundation (NSF) grants CNS-0929947, CCF-
0833136, CAREER-0953100, OCI-0749285, OCI-0749334,
OCI-1047980, CNS-0903447 and Semiconductor Research
Corporation (SRC) award 1981, U.S. Department of Energy
(DOE) grant DEFC02-10ER26006/DE-SC0004915, and a
grant from the U.S. Defense Advanced Research Projects
Agency (DARPA). Any opinions, findings and conclusions
or recommendations expressed in this material are those
of the authors and do not necessarily reflect those of NSF,
SRC, DOE, or DARPA. Computing resources on the TeraGrid
systems were provided under the TeraGrid allocation grants
ASC-070050N, CCR-090024, ASC-100019, and MCA-04N026.
We would like to thank the TeraGrid support staff, and also
the staff and consultants at NCSA, TACC, and NICS from
whom we have received significant assistance.�

References

1.	B arnes, J., Hut, P. A hirerachical O(N
logN) force-calculation algorithm.
Nature 324, 4 (December 1986),
446–449.

2.	C allahan, P.B., Kosaraju, S.R.
Algorithms for dynamic closest
pair and n-body potential fields.
In Proceedings of the 6th Annual
ACM-SIAM Symposium on Discrete
Algorithms, SODA ’95 (Philadelphia,
PA, USA, 1995), Society for
Industrial and Applied Mathematics,
263–272.

3.	C arrier, J., Greengard, L., Rokhlin, V.
A fast adaptive multipole algorithm
for particle simulations. SIAM J. Sci.
Stat. Comput. 9, 4 (1988), 669–686.

4.	C herrie, J., Beatson, R.K., Newsam,
G.N. Fast evaluation of radial basis
functions:methods for generalized
multiquadrics in rn. SIAM J. Sci.
Comput. 23, 5 (2002), 1549–1571.

5.	D arve, E., Cecka, C., Takahashi, T. The
fast multipole method on parallel
clusters, multicore processors, and
graphics processing units. Comptes
Rendus Mécanique 339(2–3) (2011),
185–193.

6.	G rama, A., Gupta, A., Karypis, G., Kumar,
V. An Introduction to Parallel Computing:
Design and Analysis of Algorithms, 2nd
edn, Addison Wesley, 2003.

7.	G rama, A.Y., Kumar, V., Sameh, A.
Scalable parallel formulations of
the Barnes–Hut method for n-body
simulations. In Proceedings of the
1994 conference on Supercomputing,
Supercomputing ’94 (Los Alamitos,
CA, USA, 1994), IEEE Computer
Society Press, 439–448.

8.	G ray, A., Moore, A. N-Body’problems
in statistical learning. Adv. Neural
Inform. Process Syst. (2001),
521–527.

9.	G reengard, L., Gropp, W.D. A parallel
version of the fast multipole method.
Comput. Math. Appl. 20, 7 (1990),
63–71.

10.	Greengard, L., Rokhlin, V. A fast
algorithm for particle simulations.

J. Comput. Phys. 73 (1987),
325–348.

11.	G umerov, N.A., Duraiswami, R. Fast
multipole methods on graphics
processors. J. Comput. Phys. 227, 18
(2008), 8290–8313.

12.	H amada, T., Narumi, T., Yokota,
R., Yasuoka, K., Nitadori, K., Taiji,
M. 42 TFlops hierarchical N-body
simulations on GPUs with applications
in both astrophysics and turbulence.
In Proceedings of SC09, The SCxy
Conference Series (Portland, Oregon,
November 2009), ACM/IEEE.

13.	H ariharan, B., Aluru, S. Efficient
parallel algorithms and software for
compressed octrees with applications
to hierarchical methods. Parallel
Comput. 31 (3–4) (2005), 311–331.

14.	 JáJá, J. An Introduction to Parallel
Algorithms, Addison Wesley, 1992.

15.	K urzak, J., Pettitt, B.M. Massively
parallel implementation of
a fast multipole method for
distributed memory machines. J. Parallel
Distr. Comput. 65, 7 (2005), 870–881.

16.	G reengard, L. Fast algorithms for
classical physics. Science 265, 5174
(1994), 909–914.

17.	L ashuk, I. et al. A massively parallel
adaptive fast-multipole method
on heterogeneous architectures.
In Proceedings of the Conference
on High Performance Computing
Networking, Storage and Analysis, SC
’09 (New York, NY, USA, 2009), ACM,
58:1–58:12.

18.	 Miller, G., Teng, S., Thurston, W.,
Vavasis, S. Separators for sphere-
packings and nearest neighbor graphs.
J. ACM (JACM) 44, 1 (1997), 1–29.

19.	O gata, S. et al. Scalable and portable
implementation of the fast multipole
method on parallel computers.
Comput. Phys. Comm. 153, 3 (2003),
445–461.

20.	Phillips, J.C., Stone, J.E., Schulten, K.
Adapting a message-driven parallel
application to GPU-accelerated
clusters. In SC ’08: Proceedings of
the 2008 ACM/IEEE Conference on

Supercomputing (2008), 1–9.
21.	R ahimian, A., Lashuk, I., Veerapaneni,

S., Chandramowlishwaran, A.,
Malhotra, D., Moon, L., Sampath, R.,
Shringarpure, A., Vetter, J., Vuduc,
R., Zorin, D., Biros, G. Petascale
direct numerical simulation of
blood flow on 200k cores and
heterogeneous architectures. In SC
’10: Proceedings of the 2010 ACM/
IEEE Conference on Supercomputing
(Piscataway, NJ, USA, 2010), IEEE
Press, 1–12.

22.	R okhlin, V. Rapid solution of integral
equations of classical potential theory.
J. Comput. Phys. 60 (1985), 187–207.

23.	 Sevilgen, F., Aluru, S., Futamura,
N. A provably optimal, distribution-
independent parallel fast multipole
method. In Proceedings of 14th
International Parallel and Distributed
Processing Symposium, 2000. IPDPS
2000 (2000), IEEE, 77–84.

24.	 Sundar, H., Sampath, R.S., Biros,
G. Bottom-up construction and 2:1
balance refinement of linear octrees
in parallel. SIAM J. Sci. Comput. 30, 5
(2008), 2675–2708.

25.	T eng, S.H. Provably good partitioning

and load balancing algorithms for
parallel adaptive N-body simulation.
SIAM J. Sci. Comput. 19, 2 (1998).

26.	T eyssier, R. et al. Full-sky weak-
lensing simulation with 70 billion
particles. Astron. Astrophys. 497, 2
(2009), 335–341.

27.	 Warren, M.S., Salmon, J.K. A parallel
hashed octtree N-body algorithm. In
Proceedings of Supercomputing, The
SCxy Conference Series (Portland,
Oregon, November 1993), ACM/IEEE.

28.	Y ing, L., Biros, G., Zorin, D. A kernel-
independent adaptive fast multipole
method in two and three dimensions.
J. Comput. Phys. 196, 2 (2004),
591–626.

29.	Y ing, L., Biros, G., Zorin, D., Langston,
H. A new parallel kernel-independent
fast multipole algorithm. In
Proceedings of SC03, The SCxy
Conference Series (Phoenix, Arizona,
November 2003), ACM/IEEE.

30.	Y okota, R., Bardhan, J., Knepley, M.,
Barba, L., Hamada, T. Biomolecular
electrostatics using a fast multipole
BEM on up to 512 GPUs and a billion
unknowns. Comput. Phys. Comm. 182, 6
(Jun. 2011), 1272–1283.

Ilya Lashuk (lashuk2@llnl.gov),
research scientist, Institute for Scientific
Computing Research, Lawrence Livermore
National Laboratory, Livermore, CA.

Aparna Chandramowlishwaran
(aparna@cc.gatech.edu), graduate
research assistant, Computational Science
and Engineering Division, College of
Computing, Atlanta, GA.

Harper Langston (harper@cc.gatech.edu),
postdoctoral associate, Computational
Science and Engineering Division, College
of Computing, Atlanta, GA.

Tuan-Anh Nguyen (tuananh@cc.gatech.edu),
graduate research assistant, Computational
Science and Engineering Division, College of
Computing, Atlanta, GA.

Rahul Sampath (rahul.sampath@gmail.com),
postdoctoral associate, Oak Ridge National
Laboratory, Oak Ridge, TN.

Aashay Shringarpure (aashay.
shringarpure@gmail.com).

Richard Vuduc (richie@cc.gatech.edu),
assistant professor, Computational
Science and Engineering Division,
College of Computing, Atlanta, GA.

Lexing Ying (lexing@math.utexas.edu),
associate professor, Mathematics, The
University of Texas at Austin, TX.

Denis Zorin (dzorin@cs.nyu.edu),
professor, Courant Institute of
Mathematical Sciences. New York
University, New York, NY.

George Biros (gbiros@acm.org), W.A.
“Tex” Moncrief, Jr. Simulation-Based
Engineering Sciences Chair, Institute
of Computational Engineering and
Sciences, The University of Texas at
Austin, TX.

© 2012 ACM 0001-0782/12/05 $10.00

