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Program Inversion

• Given a program P, and its inverse P-, then we have

P ; P- = no-op

• Examples: ++a/--a, swap(a,b)/swap(a,b), compression/
decompression, encryption/decryption, etc..

• Assume the input and output of P are IN and OUT:
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Program Inversion

• What if P is not reversible? 
IN: a 
 
a = 0;

OUT: a
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Our Previous Work

• We have built a framework that can generate the forward and 
reverse programs for loop-free programs.

• We have implemented this framework into a compiler called 
Backstroke.

• For more details please refer to our CC paper:

C. Hou, G. Vulov, D. Quinlan, D. Jefferson, R. Fujimoto, and R. Vuduc. A 
new method for program inversion. International Conference on 
Compiler Construction, 2012.
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Overview Of Our Previous Work

• Our approach:
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Overview Of Our Previous Work

• We turn the program into the SSA (Static Single Assignment) 
form CFG (Control Flow Graph), so that each variable is defined 
only once and can represent a distinct value. An SSA graph is then 
built to show the data dependencies between different values.
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Overview Of Our Previous Work

• We build a Value Search Graph (VSG) showing all equality 
relations between values in the program. Finding the inverse 
becomes a search problem in this graph. Each equality is 
constrained by a condition represented by a set of CFG paths.
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Overview Of Our Previous Work

• We then search for the desired values by following the equalities 
until available values are reached. The search should guarantee 
that each value is retrieved for all CFG paths. The search result 
which we call a Route Graph (RG) shows valid data dependences 
in reverse program.
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Overview Of Our Previous Work

• The forward and reverse programs are built based on the search 
result.
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Example: Building SSA Form CFG

IN: a, b

void foo() 
{
  if (a == 0)
    a = 1;
  else 
  {
    b = a + 10;
    a = 0;
  }
}

OUT: a, b

Entry

if (a0 == 0)

b1 = a0 + 10;
a2 = 0;

a1 = 1;

a3 = Φ(a1, a2);
b2 = Φ(b0, b1);

FT

Exit

SSA form CFG
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Example: Building SSA Graph

Entry

if (a0 == 0)

b1 = a0 + 10;
a2 = 0;

a1 = 1;

a3 = Φ(a1, a2);
b2 = Φ(b0, b1);

FT

Exit a0

b0
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Example: Building Value Search Graph
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Example: Building Value Search Graph
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Example: Building Value Search Graph
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Example: Building Route Graph
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Example: Generating The Forward Program

void foo_forward() 
{
  int trace = 0;
  if (a == 0) 
  {
    trace |= 1;
    a = 1;
  }
  else 
  {
    store(b);
    b = a + 10;
    a = 0;
  }
  store(trace);
}

Red: Path recording.  Blue: State saving.
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Example: Generating The Reverse Program
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void foo_reverse() 
{
  int trace;
  restore(trace);
  if ((trace & 1) == 1)
    a = 0;
  else 
  {
    a = b - 10;
    restore(b);
  }
}
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Example: Generated Forward And Reverse 
Programs

void foo_forward() 
{
  int trace = 0;
  if (a == 0) 
  {
    trace |= 1;
    a = 1;
  }
  else 
  {
    store(b);
    b = a + 10;
    a = 0;
  }
  store(trace);
}

void foo_reverse() 
{
  int trace;
  restore(trace);
  if ((trace & 1) == 1)
    a = 0;
  else 
  {
    a = b - 10;
    restore(b);
  }
}

void foo() 
{
  if (a == 0)
    a = 1;
  else 
  {
    b = a + 10;
    a = 0;
  }
}

Red: Path recording.  Blue: State saving.
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Handling Loops

• What problems do loops bring?

• Cyclic control flow paths.

• Solution: In the CFG, we collapse the loop into a single node and 
remove cycles. Also, we record the control flows in the loop body 
separately, where the loop body is treated as another loop-free program.
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Handling Loops

• Recording CFG paths for Programs with Loops
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Handling Loops

• What problems do loops bring?

• Cyclic control flow paths.

• Solution: In the CFG, we collapse the loop into a single node and 
remove cycles. Also, we record the control flows in the loop body 
separately, where the loop body is treated as another loop-free program.

• If we want to build loops in the reverse program, cycles may be 
formed in the Route Graph.

• Solution: we build special constructs in VSG for loops and also develop 
special searching rules.
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Handling While Loops

• While loop: a special single-entry single-exit loop.

• For each variable modified in a while loop, we define four special 
definitions of it.
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Handling While Loops

• Those four definitions in the VSG:

• Forward edges represent data flows in the original (forward) programs.

• Reverse edges represent data flows in the reverse programs.
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Handling While Loops

• Those four definitions in the VSG:

• Forward edges represent data flows in the original (forward) programs.

• Reverse edges represent data flows in the reverse programs.

21

μ vI
in

vin
μ'
vIout

η
vout

forward edge
reverse edge

Initialization on 
the first iteration



Handling While Loops

• Those four definitions in the VSG:

• Forward edges represent data flows in the original (forward) programs.

• Reverse edges represent data flows in the reverse programs.
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Handling While Loops

• Those four definitions in the VSG:

• Forward edges represent data flows in the original (forward) programs.

• Reverse edges represent data flows in the reverse programs.
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Handling While Loops

• Special search rules on the VSG:

• Allows cycles to be formed. But each cycle must contain a forward/reverse edge 
between the input and output of the iteration.

• During the search for a given value, the forward and reverse edges cannot 
coexist in the search result. 
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Handling While Loops

• Building the loop body.

• Using the same method we build the reverse code for loop-free programs.

• Building the loop predicate.

• Approach 1: Building the same loop predicate as in the original loop.

• Approach 2: If there is a monotonic variable in a loop, build the loop predicate from 
it.

• Approach 3: Insert a counter counting the number of iterations of the loop in the 
forward program, and use this counter to build the loop predicate in the reverse 
program.
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Handling While Loops

• Building the loop predicate.

• Approach 1: Building the same loop predicate as in the original loop.
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i = 0;
while (A[i] > 0) {
    /* ... */
    i = i + 2;
}

i = 0;
while (A[i] > 0) {
    /* generated loop body */
    i = i + 2;
}

Original loop Generated loop



Handling While Loops

• Building the loop predicate.

• Approach 2: If there is a monotonic variable in a loop, build the loop predicate from 
it.
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i = 0;
while (A[i] > 0) {
    /* ... */
    i = i + 2;
}
/* i == i1 */

i = 0;
while (i != i1) {
    /* generated loop body */
    i = i + 2;
}

Original loop Generated loop



Handling While Loops

• Building the loop predicate.

• Approach 3: Insert a counter counting the number of iterations of the loop in the 
forward program, and use this counter to build the loop predicate in the reverse 
program.
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i = 0;
count = 0;
while (A[i] > 0) {
    /* ... */
    i = i + 2;
    count = count + 1;
}
store(count);

restore(count);
while (count > 0) {
    /* generated loop body */
    count = count - 1;
}

Original loop Generated loop



An Example

• Our example: Given an integer n (n > 0), get 1+2+...+n.
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// input: n (n > 0)
s = 0;
while (n > 0) {
    s = s + n;
    n = n - 1;
}
// output: s

s0 = 0;

s1 = μ(s0, s2);
n1 = μ(n0, n2);
while(n1 > 0)

 s2 = s1 + n1;
 n2 = n1 - 1;

s3 = η(s1);
n3 = η(n1);

T

F

CFG in SSA formThe loop example



An Example

• The search result of our example.
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An Example

• The original and generated loop:
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n = 0;
while (s != 0) {
    n = n + 1;
    s = s - n;
}

s = 0;
while (n > 0) {
    s = s + n;
    n = n - 1;
}

The original loop The generated loop



Handling Other Loops

• We only consider natural loops (loops with single-entry).
• A non-while loops may be:

• A loop with several exits.
• The entry and exit are at different nodes.
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Current And Future Work

• We are working on reversing programs with arrays. Specifically, 
we are interested in automatically reverse some injective 
programs like compression/decompression programs. 

• We will research on how to rebuild the control flows in the reverse 
program without path recording.

• Questions?
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