
Synthesizing Loops For Program
Inversion

Cong Hou, Daniel Quinlan,
David Jefferson, Richard Fujimoto, Richard Vuduc

For RC 2012

Program Inversion

• Given a program P, and its inverse P-, then we have

P ; P- = no-op

• Examples: ++a/--a, swap(a,b)/swap(a,b), compression/
decompression, encryption/decryption, etc..

• Assume the input and output of P are IN and OUT:

2

IN OUT

P

P-
Reverse program

Program Inversion

• What if P is not reversible?
IN: a

a = 0;

OUT: a

3

P

Program Inversion

• What if P is not reversible?
IN: a

a = 0;

OUT: a

3

• Make it reversible!
IN: a

s = a;
a = 0;

OUT: a, s

IN: a, s

a = s;

OUT: a

P+ P-

P

Program Inversion

• What if P is not reversible?
IN: a

a = 0;

OUT: a

3

• Make it reversible!
IN: a

s = a;
a = 0;

OUT: a, s

IN: a, s

a = s;

OUT: a

P+ P-

P
State Saving

Program Inversion

• What if P is not reversible?
IN: a

a = 0;

OUT: a

3

• Make it reversible!
IN: a

s = a;
a = 0;

OUT: a, s

IN: a, s

a = s;

OUT: a

P+ P-

P

IN OUT+S

P+

P-

Reverse program

Forward programState Saving

Our Previous Work

• We have built a framework that can generate the forward and
reverse programs for loop-free programs.

• We have implemented this framework into a compiler called
Backstroke.

• For more details please refer to our CC paper:

C. Hou, G. Vulov, D. Quinlan, D. Jefferson, R. Fujimoto, and R. Vuduc. A
new method for program inversion. International Conference on
Compiler Construction, 2012.

4

Overview Of Our Previous Work

• Our approach:

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

5

Overview Of Our Previous Work

• We turn the program into the SSA (Static Single Assignment)
form CFG (Control Flow Graph), so that each variable is defined
only once and can represent a distinct value. An SSA graph is then
built to show the data dependencies between different values.

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

6

Overview Of Our Previous Work

• We build a Value Search Graph (VSG) showing all equality
relations between values in the program. Finding the inverse
becomes a search problem in this graph. Each equality is
constrained by a condition represented by a set of CFG paths.

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

7

Overview Of Our Previous Work

• We then search for the desired values by following the equalities
until available values are reached. The search should guarantee
that each value is retrieved for all CFG paths. The search result
which we call a Route Graph (RG) shows valid data dependences
in reverse program.

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

8

Overview Of Our Previous Work

• The forward and reverse programs are built based on the search
result.

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

9

Example: Building SSA Form CFG

IN: a, b

void foo()
{
 if (a == 0)
 a = 1;
 else
 {
 b = a + 10;
 a = 0;
 }
}

OUT: a, b

Entry

if (a0 == 0)

b1 = a0 + 10;
a2 = 0;

a1 = 1;

a3 = Φ(a1, a2);
b2 = Φ(b0, b1);

FT

Exit

SSA form CFG

10

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

Example: Building SSA Graph

Entry

if (a0 == 0)

b1 = a0 + 10;
a2 = 0;

a1 = 1;

a3 = Φ(a1, a2);
b2 = Φ(b0, b1);

FT

Exit a0

b0

10

+

b1

1

a1

0

a2

Φ

a3

Φ

b2

==

0

SSA GraphSSA form CFG

11

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

Example: Building Value Search Graph

a0

b0

10

+

b1

1

a1

0

a2

Φ

a3

Φ

b2

==

0

a0

b0

10

b1
1

a1

0

a2

Φ

a3

Φ

b2

0

+-

SS

{T}

{T,F}

{F}

{T,F} {F}

{F}

{T}

{F}

SSA Graph Value Search Graph

Target nodes

Available nodes

12

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

Example: Building Value Search Graph

a0

b0

10

+

b1

1

a1

0

a2

Φ

a3

Φ

b2

==

0

a0

b0

10

b1
1

a1

0

a2

Φ

a3

Φ

b2

0

+-

SS

{T}

{T,F}

{F}

{T,F} {F}

{F}

{T}

{F}

SSA Graph Value Search Graph

State saving edges

Target nodes

Available nodes

12

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

Example: Building Value Search Graph

a0

b0

10

+

b1

1

a1

0

a2

Φ

a3

Φ

b2

==

0

a0

b0

10

b1
1

a1

0

a2

Φ

a3

Φ

b2

0

+-

SS

{T}

{T,F}

{F}

{T,F} {F}

{F}

{T}

{F}

SSA Graph Value Search Graph

State saving edges

Target nodes

Available nodes

12

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

Example: Building Route Graph

a0

b0

10

b1
1

a1

0

a2

Φ

a3

Φ

b2

0

+-

SS

{T}

{T,F}

{F}

{T,F} {F}

{F}

{T}

{F}

T

F

F

TF

a0

b0
SS

{T,F}

{T,F}

a0

b0

10

b1

Φ

b2

0

-

SS

{T}

{F}

{F}

{T}

{F}

Route Graph

13

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

Example: Generating The Forward Program

void foo_forward()
{
 int trace = 0;
 if (a == 0)
 {
 trace |= 1;
 a = 1;
 }
 else
 {
 store(b);
 b = a + 10;
 a = 0;
 }
 store(trace);
}

Red: Path recording. Blue: State saving.

14

a0

b0
SS

{T,F}

{T,F}

a0

b0

10

b1

Φ

b2

0

-

SS

{T}

{F}

{F}

{T}

{F}

Route Graph

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

Example: Generating The Reverse Program

15

a0

b0
SS

{T,F}

{T,F}

a0

b0

10

b1

Φ

b2

0

-

SS

{T}

{F}

{F}

{T}

{F}

Route Graph

void foo_reverse()
{
 int trace;
 restore(trace);
 if ((trace & 1) == 1)
 a = 0;
 else
 {
 a = b - 10;
 restore(b);
 }
}

Original
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

Example: Generated Forward And Reverse
Programs

void foo_forward()
{
 int trace = 0;
 if (a == 0)
 {
 trace |= 1;
 a = 1;
 }
 else
 {
 store(b);
 b = a + 10;
 a = 0;
 }
 store(trace);
}

void foo_reverse()
{
 int trace;
 restore(trace);
 if ((trace & 1) == 1)
 a = 0;
 else
 {
 a = b - 10;
 restore(b);
 }
}

void foo()
{
 if (a == 0)
 a = 1;
 else
 {
 b = a + 10;
 a = 0;
 }
}

Red: Path recording. Blue: State saving.

16

Handling Loops

• What problems do loops bring?

• Cyclic control flow paths.

• Solution: In the CFG, we collapse the loop into a single node and
remove cycles. Also, we record the control flows in the loop body
separately, where the loop body is treated as another loop-free program.

17

Handling Loops

• Recording CFG paths for Programs with Loops

18

Entry

Exit

Entry

Exit

Handling Loops

• What problems do loops bring?

• Cyclic control flow paths.

• Solution: In the CFG, we collapse the loop into a single node and
remove cycles. Also, we record the control flows in the loop body
separately, where the loop body is treated as another loop-free program.

• If we want to build loops in the reverse program, cycles may be
formed in the Route Graph.

• Solution: we build special constructs in VSG for loops and also develop
special searching rules.

19

Handling While Loops

• While loop: a special single-entry single-exit loop.

• For each variable modified in a while loop, we define four special
definitions of it.

20

A

B

T

F

vin

vI
in = μ(vin, vI

out);

while(...)
 vI

out =...;

vout= η(vI
in);

T

F

vin: The input of the loop.
vout: The output of the loop.

vI
in: The input of the iteration.

vI
out: The output of the iteration.

Handling While Loops

• Those four definitions in the VSG:

• Forward edges represent data flows in the original (forward) programs.

• Reverse edges represent data flows in the reverse programs.

21

μ vI
in

vin
μ'
vIout

η
vout

forward edge
reverse edge

Handling While Loops

• Those four definitions in the VSG:

• Forward edges represent data flows in the original (forward) programs.

• Reverse edges represent data flows in the reverse programs.

21

μ vI
in

vin
μ'
vIout

η
vout

forward edge
reverse edge

Initialization on
the first iteration

Handling While Loops

• Those four definitions in the VSG:

• Forward edges represent data flows in the original (forward) programs.

• Reverse edges represent data flows in the reverse programs.

21

μ vI
in

vin
μ'
vIout

η
vout

forward edge
reverse edge

Initialization on
the first iteration

After each
iteration, the

output becomes
the input

Handling While Loops

• Those four definitions in the VSG:

• Forward edges represent data flows in the original (forward) programs.

• Reverse edges represent data flows in the reverse programs.

21

μ vI
in

vin
μ'
vIout

η
vout

forward edge
reverse edge

Initialization on
the first iteration

After each
iteration, the

output becomes
the input

The output value
of the loop is the
last definition of
the mu node.

Handling While Loops

• Special search rules on the VSG:

• Allows cycles to be formed. But each cycle must contain a forward/reverse edge
between the input and output of the iteration.

• During the search for a given value, the forward and reverse edges cannot
coexist in the search result.

22

μ vI
in

vin
μ'
vIout

η
vout

Handling While Loops

• Building the loop body.

• Using the same method we build the reverse code for loop-free programs.

• Building the loop predicate.

• Approach 1: Building the same loop predicate as in the original loop.

• Approach 2: If there is a monotonic variable in a loop, build the loop predicate from
it.

• Approach 3: Insert a counter counting the number of iterations of the loop in the
forward program, and use this counter to build the loop predicate in the reverse
program.

23

Handling While Loops

• Building the loop predicate.

• Approach 1: Building the same loop predicate as in the original loop.

24

i = 0;
while (A[i] > 0) {
 /* ... */
 i = i + 2;
}

i = 0;
while (A[i] > 0) {
 /* generated loop body */
 i = i + 2;
}

Original loop Generated loop

Handling While Loops

• Building the loop predicate.

• Approach 2: If there is a monotonic variable in a loop, build the loop predicate from
it.

25

i = 0;
while (A[i] > 0) {
 /* ... */
 i = i + 2;
}
/* i == i1 */

i = 0;
while (i != i1) {
 /* generated loop body */
 i = i + 2;
}

Original loop Generated loop

Handling While Loops

• Building the loop predicate.

• Approach 3: Insert a counter counting the number of iterations of the loop in the
forward program, and use this counter to build the loop predicate in the reverse
program.

26

i = 0;
count = 0;
while (A[i] > 0) {
 /* ... */
 i = i + 2;
 count = count + 1;
}
store(count);

restore(count);
while (count > 0) {
 /* generated loop body */
 count = count - 1;
}

Original loop Generated loop

An Example

• Our example: Given an integer n (n > 0), get 1+2+...+n.

27

// input: n (n > 0)
s = 0;
while (n > 0) {
 s = s + n;
 n = n - 1;
}
// output: s

s0 = 0;

s1 = μ(s0, s2);
n1 = μ(n0, n2);
while(n1 > 0)

 s2 = s1 + n1;
 n2 = n1 - 1;

s3 = η(s1);
n3 = η(n1);

T

F

CFG in SSA formThe loop example

An Example

• The search result of our example.

28

μ'
n2

η
n3

μ
n1

n0

�� ��

0
s0

μ
s1

μ'
s2

η
s3

0

�

μ'
n2

η
n3

μ
n1

n0

��

0
s0

μ
s1

μ'
s2

η
s3

0

��� ���	���

�

μ'
n2

η
n3

μ
n1

n0

��

0
s0

μ
s1

μ'
s2

η
s3

0

���	���
�

�

Available node Target node Forward edge Reverse edge

An Example

• The original and generated loop:

29

n = 0;
while (s != 0) {
 n = n + 1;
 s = s - n;
}

s = 0;
while (n > 0) {
 s = s + n;
 n = n - 1;
}

The original loop The generated loop

Handling Other Loops

• We only consider natural loops (loops with single-entry).
• A non-while loops may be:

• A loop with several exits.
• The entry and exit are at different nodes.

30

2

3 4

5

6

1

2

3 4

5

6

1

2'

3' 4'

5'

1'

0

F T

7
7

TF

Current And Future Work

• We are working on reversing programs with arrays. Specifically,
we are interested in automatically reverse some injective
programs like compression/decompression programs.

• We will research on how to rebuild the control flows in the reverse
program without path recording.

• Questions?

31

